dataset of thermodynamic data for gwb programs dataset format: jul22 activity model: phreeqc fugacity model: peng-robinson * * +++++++++++++++++++++++++++++++++++++++++++++++ * +++++++++++++++++++++++++++++++++++++++++++++++ * * Cemdata18: A chemical thermodynamic database for hydrated * Portland cements and alkali-activated materials * * Authors: Barbara Lothenbach, Dmitrii Kulik, Thomas Matschei, * Magdalena Balonis, Luis Baquerizo, Belay Dilnesa, * George Dan Miron, Rupert J. Myers * * For questions contact: * Barbara Lothenbach (barbara.lothenbach@empa.ch) * G. Dan Miron (dan.miron@psi.ch) * * This file, thermo_cemdata.tdat, is the GWB-format Cemdata18 dataset * supplemented with thermodynamic data for Mg-, Ca-, and Al-phosphates * and the zeolite21 database for Na-, Ca-, and K-zeolites, as recommended * by Empa and cited at the end of this document. * * CEMDATA18 version 18.11 (31.03.2022), phosphate (25.05.2022), and zeolite21 * databases were downloaded in PhreeqC format from * https://www.empa.ch/web/s308/cemdata. The phosphate and zeolite * databases were copied into the main cemdata dataset and then * converted to GWB format using TEdit in GWB Release 16. * * Notes: * * The temperature dependence of log Ks and Debye-Huckel variables A and B * is described with a polynomial containing up to six coefficients a-f * spread over two lines: * * log K = a + b*(TK-Tr) + c*(TK^2-Tr^2) * + d*(1/TK - 1/Tr) + e*(1/TK^2 - 1/Tr^2) + f*ln(TK/Tr) * * where TK is absolute temperature and Tr is 298.15 K. Hence, if c-f are * zero (or omitted), then b is the first temperature derivative. * * GWB Log K polynomial coefficients a-f were converted from coefficients * A1-A6 in PhreeqC's analytic expression as follows: * * a= log10 K(298.15 K) = A1 + A2*Tr + A3/Tr + A4*log10(Tr) + A5/Tr^2 + A6*Tr^2 * b= A2 * c= A6 * d= A3 * e= A5 * f= A4/ln(10) * * A temperature range of validity may optionally be set for each reaction. * If no range is set, the span of the principal temperatures is assumed. * * The polynomial coefficients for Debye-Huckel A and B are taken from * the THEREDA project's 2020 release GWB-format dataset. * * Cement shorthand notation is used: * A=Al2O3; C=CaO; F=Fe2O3; H=H2O; K=K2O; M=MgO; N=Na2O; S=SiO2; * c=CO2; s=SO3; P=P2O5. * * Redox coupling has been adjusted from the PhreeqC version to better * support redox disequilibrium. The secondary aqueous species Fe++, * HCN, and SCN- have been decoupled. Redox reactions within the * aqueous species, minerals, and gases sections have been rebalanced * in terms of these and other redox species, in place of basis species. * For example, NH3 has been rebalanced in terms of NH4+ in place of * NO3-, siderite (Sd) has been rebalanced in terms of Fe++ in place * of FeO2-, and CH4(g) has been rebalanced in terms of CH4 in place * of CO3--. * * No attempt was made to rebalance reactions to more closely match * Table 2 (e.g. using the aqueous species OH- in place of the basis * species H+), although this is allowed beginning with GWB 15. * * No attempt was made to change the represenation of species to * more closely match Table 2 (e.g. Fe(OH)4- vs. FeO2- + 2 H2O). * * Aqueous species' names have been converted to the GWB format. For * example, Ca++ replaces Ca+2. Suffixes (e.g. (aq) and (s)) have been * added where species names were duplicated. * * Many minerals in the PhreeqC dataset use different names than the * reference. Some names appear to indicate composition as a chemical * formula or in cement notation, but do not match their actual * compositions. For example, the name might refer to a factored form, * subscripts might be left out, standard and cement notations might be * mixed, some other convention might be used for names, or there may be * typos. For example, in CA the name is the composition in cement * notation but in 5CA it is not. For another example, C3AFS0.84H4.32 * might be represented more clearly as C3(A,F)S0.84H4.32 or * C3A0.5F0.5S0.84H4.32. In the GWB dataset, only AlOHam and AlOHmic * (renamed Al(OH)3(am) and Al(OH)3(mic), respectively) were changed. * Common names, chemical formulae, and cement notation have been added * as annotations to help clarify such cases. * * Phosphate and zeolite additions to the original Cemdata18 compilation * have been noted. The zeolites included in the original compilation * can be suppressed in the GWB apps to avoid considering the same solid * twice. The original and updated entries are named, respectively: * * natrolite -> NAT * zeoliteP_Ca -> GIS-LS-P(Ca) * chabazite -> CHA(Ca) * zeoliteX -> FAU-X(Na) * zeoliteY -> FAU-Y(Na) * * Binary solid solutions have been added, following Tables 1 and 4. * Multicomponent solid solutions have been added following Tables 3 and * 4, although they are not currently supported and have been commented out. * Some solid solutions (e.g. ettringite 30-32H) do not form an independent * basis set with H2O, which must always be in the basis. These solid * solutions cannot be swapped into the basis or allowed to precipitate * as equilibrium minerals in continuous mode. Similarly, certain * solid solution and mineral assemblages (e.g. CSH-II + Portlandite) * cannot coexist with H2O in continuous mode. These solid solutions can * be used in discrete mode or can be set to react kinetically. Many * minerals in the compilation are fictive end members and are only * intended to be used as part of solid solutions. Some solid solutions * use downscaled versions of minerals as end members (e.g. ettringite * vs. 1/3 ettringite). In Table 1, only solid solution "a" was described * as such, but usage in the literature may differ. * * Oxide components have been added. * * Factors have been added for evaluating gas fugacity coefficients. * * To the best of our knowledge, this dataset is not subject to copyright. * * +++++++++++++++++++++++++++++++++++++++++++++++ * +++++++++++++++++++++++++++++++++++++++++++++++ * temperatures 0.0000 12.5000 25.0000 40.0000 55.0000 70.0000 85.0000 100.0000 * pressures 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 * debye huckel a (adh) a= 0.5115893 b= -0.5540435 c= 0.000192716 d= 72830.44 e= -3267700 f= 301.9127 * debye huckel b (bdh) a= 0.3285246 b= -0.01600781 c= 5.455436e-06 d= 2293.334 e= -106171.4 f= 9.152884 15 elements Aluminum (Al) mole wt.= 26.9815 g Carbon (C ) mole wt.= 12.0108 g Calcium (Ca) mole wt.= 40.0780 g Chlorine (Cl) mole wt.= 35.4530 g Iron (Fe) mole wt.= 55.8450 g Hydrogen (H ) mole wt.= 1.0079 g Potassium (K ) mole wt.= 39.0983 g Magnesium (Mg) mole wt.= 24.3050 g Nitrogen (N ) mole wt.= 14.0067 g Sodium (Na) mole wt.= 22.9898 g Oxygen (O ) mole wt.= 15.9994 g Sulfur (S ) mole wt.= 32.0670 g Silicon (Si) mole wt.= 28.0855 g Strontium (Sr) mole wt.= 87.6200 g Phosphorus (P ) mole wt.= 30.9738 g -end- 16 basis species H2O charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 18.0152 g 2 elements in species 2.000 H 1.000 O AlO2- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 58.9803 g 2 elements in species 1.000 Al 2.000 O Ca++ charge= 2 ion size= 4.86 A b= .1500 mole wt.= 40.0780 g 1 elements in species 1.000 Ca Cl- charge= -1 ion size= 3.71 A b= .0100 mole wt.= 35.4530 g 1 elements in species 1.000 Cl CO3-- charge= -2 ion size= 5.4 A b= .0640 mole wt.= 60.0090 g 2 elements in species 1.000 C 3.000 O FeO2- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 87.8438 g 2 elements in species 1.000 Fe 2.000 O H+ charge= 1 ion size= 9.0 A b= .0640 mole wt.= 1.0079 g 1 elements in species 1.000 H K+ charge= 1 ion size= 3.71 A b= .0100 mole wt.= 39.0983 g 1 elements in species 1.000 K Mg++ charge= 2 ion size= 5.46 A b= .2200 mole wt.= 24.3050 g 1 elements in species 1.000 Mg Na+ charge= 1 ion size= 4.32 A b= .0600 mole wt.= 22.9898 g 1 elements in species 1.000 Na NO3- charge= -1 ion size= 3.0 A b= 0.0000 mole wt.= 62.0049 g 2 elements in species 1.000 N 3.000 O SiO2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 60.0843 g 2 elements in species 2.000 O 1.000 Si SO4-- charge= -2 ion size= 5.31 A b= -.0700 mole wt.= 96.0646 g 2 elements in species 4.000 O 1.000 S Sr++ charge= 2 ion size= 5.48 A b= .1100 mole wt.= 87.6200 g 1 elements in species 1.000 Sr O2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 31.9988 g 1 elements in species 2.000 O PO4--- charge= -3 ion size= 4.0 A b= .0640 mole wt.= 94.9714 g 2 elements in species 4.000 O 1.000 P * from phosphate database -end- 11 redox couples H2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 2.0158 g 2 species in reaction 2.000 e- 2.000 H+ * log10 K(298 K) = 3.1060 a= 3.106032254 b= 0 c= 0 d= -2359.24879 e= 0 f= -7.209039983 CH4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 16.0424 g 4 species in reaction -3.000 H2O 1.000 CO3-- 8.000 e- 10.000 H+ * log10 K(298 K) = -38.1782 a= -38.17823875 b= 0 c= 0 d= -24658.58708 e= 0 f= -35.37944602 HCN charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 27.0254 g 5 species in reaction -6.000 H2O 1.000 CO3-- 1.000 NO3- 10.000 e- 13.000 H+ * log10 K(298 K) = -117.3526 a= -117.3526005 b= 0 c= 0 d= -48438.20341 e= 0 f= -34.6891193 SCN- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 58.0845 g 6 species in reaction -10.000 H2O 1.000 CO3-- 1.000 NO3- 1.000 SO4-- 16.000 e- 20.000 H+ * log10 K(298 K) = -156.9208 a= -156.9208024 b= 0 c= 0 d= -68953.38924 e= 0 f= -57.74141959 Fe++ charge= 2 ion size= 5.08 A b= .1600 mole wt.= 55.8450 g 4 species in reaction -2.000 H2O 1.000 e- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -34.6201 a= -34.62014162 b= 0 c= 0 d= -16777.04876 e= 0 f= -17.6963245 NH4+ charge= 1 ion size= 2.5 A b= .0640 mole wt.= 18.0383 g 4 species in reaction -3.000 H2O 1.000 NO3- 8.000 e- 10.000 H+ * log10 K(298 K) = -119.1370 a= -119.1369822 b= 0 c= 0 d= -44761.47698 e= 0 f= -12.77872731 N2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 28.0134 g 4 species in reaction -6.000 H2O 2.000 NO3- 10.000 e- 12.000 H+ * log10 K(298 K) = -207.2682 a= -207.2681769 b= 0 c= 0 d= -79047.23892 e= 0 f= -35.29631641 HS- charge= -1 ion size= 3.5 A b= .0640 mole wt.= 33.0749 g 4 species in reaction -4.000 H2O 1.000 SO4-- 8.000 e- 9.000 H+ * log10 K(298 K) = -33.6902 a= -33.69021447 b= 0 c= 0 d= -18639.97124 e= 0 f= -18.71320592 S2O3-- charge= -2 ion size= 4.0 A b= .0640 mole wt.= 112.1322 g 4 species in reaction -5.000 H2O 2.000 SO4-- 8.000 e- 10.000 H+ * log10 K(298 K) = -38.0143 a= -38.01425222 b= 0 c= 0 d= -22219.58552 e= 0 f= -28.99856088 SO3-- charge= -2 ion size= 4.5 A b= 0.0000 mole wt.= 80.0652 g 4 species in reaction -1.000 H2O 1.000 SO4-- 2.000 e- 2.000 H+ * log10 K(298 K) = 3.3970 a= 3.397045767 b= 0 c= 0 d= -1175.143358 e= 0 f= -1.651698351 ClO4- charge= -1 ion size= 3.0 A b= 0.0000 mole wt.= 99.4506 g 4 species in reaction -8.000 e- -8.000 H+ 1.000 Cl- 4.000 H2O * log10 K(298 K) = 187.7177 a= 187.7176547 b= 0 c= 0 d= 63068.03826 e= 0 f= 4.576208728 -end- 84 aqueous species FeO2H charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 88.8517 g 2 species in reaction 1.000 H+ 1.000 FeO2- * log10 K(298 K) = -9.0400 a= -9.039972124 b= 0 c= 0 d= -737.003635 e= 0 f= 4.032934995 SiO3-- charge= -2 ion size= 4.0 A b= .0640 mole wt.= 76.0837 g 3 species in reaction -2.000 H+ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 23.1400 a= 23.14001584 b= 0 c= 0 d= 3917.496558 e= 0 f= 0 HSiO3- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 77.0916 g 3 species in reaction -1.000 H+ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 9.8094 a= 9.809376954 b= 0 c= 0 d= 4741.842127 e= 0 f= 10.81364944 Mg(OH)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 41.3123 g 3 species in reaction -1.000 H+ 1.000 Mg++ 1.000 H2O * log10 K(298 K) = 11.4400 a= 11.43997384 b= 0 c= 0 d= 2051.344448 e= 0 f= -3.94518536 Mg(HSiO3)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 101.3966 g 4 species in reaction -1.000 H+ 1.000 Mg++ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 8.3092 a= 8.309188433 b= 0 c= 0 d= 403.475592 e= 0 f= -3.159346867 NH3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 17.0304 g 2 species in reaction -1.000 H+ 1.000 NH4+ * log10 K(298 K) = 9.2369 a= 9.236946 b= 0 c= 0 d= 2549.47302 e= 0 f= -0.51115244 NaOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 39.9971 g 3 species in reaction -1.000 H+ 1.000 Na+ 1.000 H2O * log10 K(298 K) = 14.1801 a= 14.18005918 b= 0 c= 0 d= 4902.375428 e= 0 f= 6.627373315 KOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 56.1056 g 3 species in reaction -1.000 H+ 1.000 H2O 1.000 K+ * log10 K(298 K) = 14.4600 a= 14.46001542 b= 0 c= 0 d= 5964.687625 e= 0 f= 8.815483546 OH- charge= -1 ion size= 10.65 A b= .0640 mole wt.= 17.0073 g 2 species in reaction -1.000 H+ 1.000 H2O * log10 K(298 K) = 14.0001 a= 14.00007914 b= 0 c= 0 d= 6215.240028 e= 0 f= 11.05772207 Sr(CO3) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 147.6290 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ * log10 K(298 K) = -2.8054 a= -2.805361139 b= 0 c= 0 d= -2074.553325 e= 0 f= -10.26762706 SrHCO3+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 148.6369 g 3 species in reaction 1.000 CO3-- 1.000 Sr++ 1.000 H+ * log10 K(298 K) = -11.5137 a= -11.5137477 b= 0 c= 0 d= -9094.004136 e= 0 f= -28.25618614 FeOH+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 72.8523 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Fe++ * log10 K(298 K) = 9.5000 a= 9.50001175 b= 0 c= 0 d= 2426.80714 e= 0 f= -1.05186688 Mg(SO4) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.3696 g 2 species in reaction 1.000 SO4-- 1.000 Mg++ * log10 K(298 K) = -2.3701 a= -2.370078088 b= 0 c= 0 d= -2716.841523 e= 0 f= -10.31326837 KSO4- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 135.1629 g 2 species in reaction 1.000 SO4-- 1.000 K+ * log10 K(298 K) = -0.8499 a= -0.8499171721 b= 0 c= 0 d= -3150.048361 e= 0 f= -11.10315144 HSO4- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 97.0725 g 2 species in reaction 1.000 SO4-- 1.000 H+ * log10 K(298 K) = -1.9878 a= -1.987759544 b= 0 c= 0 d= -3428.229466 e= 0 f= -15.08345516 Na(SO4)- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 119.0544 g 2 species in reaction 1.000 SO4-- 1.000 Na+ * log10 K(298 K) = -0.7001 a= -0.7000735375 b= 0 c= 0 d= -2908.645146 e= 0 f= -10.33622821 Sr(SO4) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 183.6846 g 2 species in reaction 1.000 SO4-- 1.000 Sr++ * log10 K(298 K) = -2.2900 a= -2.290025302 b= 0 c= 0 d= -2594.980137 e= 0 f= -10.2927675 SrSiO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 163.7037 g 4 species in reaction -2.000 H+ 1.000 Sr++ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 18.7693 a= 18.76927711 b= 0 c= 0 d= 5596.700024 e= 0 f= -0.006340699436 Sr(OH)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 104.6273 g 3 species in reaction -1.000 H+ 1.000 Sr++ 1.000 H2O * log10 K(298 K) = 13.2900 a= 13.29004152 b= 0 c= 0 d= 5334.855026 e= 0 f= 3.419051059 FeHSO4+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 152.9175 g 3 species in reaction 1.000 SO4-- 1.000 H+ 1.000 Fe++ * log10 K(298 K) = -3.0679 a= -3.06793695 b= 0 c= 0 d= -9316.91389 e= 0 f= -33.26010458 Fe(SO4) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.9096 g 2 species in reaction 1.000 SO4-- 1.000 Fe++ * log10 K(298 K) = -2.2500 a= -2.24995651 b= 0 c= 0 d= -2644.89137 e= 0 f= -10.28603029 Fe(SO4)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 151.9096 g 4 species in reaction -2.000 H2O 1.000 SO4-- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -25.6402 a= -25.64017797 b= 0 c= 0 d= -16269.57338 e= 0 f= -26.42023575 HSO3- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 81.0731 g 2 species in reaction 1.000 H+ 1.000 SO3-- * log10 K(298 K) = -7.2201 a= -7.22005279 b= 0 c= 0 d= -3812.539819 e= 0 f= -14.39645427 FeHSO4++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 152.9175 g 4 species in reaction -2.000 H2O 1.000 SO4-- 5.000 H+ 1.000 FeO2- * log10 K(298 K) = -26.0681 a= -26.06806266 b= 0 c= 0 d= -27250.33275 e= 0 f= -56.33122328 Al(SO4)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 123.0461 g 4 species in reaction -2.000 H2O 1.000 SO4-- 1.000 AlO2- 4.000 H+ * log10 K(298 K) = -26.7792 a= -26.77921619 b= 0 c= 0 d= -12391.4612 e= 0 f= -13.67700551 H2S charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 34.0828 g 2 species in reaction 1.000 H+ 1.000 HS- * log10 K(298 K) = -6.9898 a= -6.98983282 b= 0 c= 0 d= -5444.38927 e= 0 f= -14.26480529 NaHCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.0067 g 3 species in reaction 1.000 CO3-- 1.000 Na+ 1.000 H+ * log10 K(298 K) = -10.0792 a= -10.0792043 b= 0 c= 0 d= -7758.548881 e= 0 f= -23.5855631 NaCO3- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 82.9988 g 2 species in reaction 1.000 CO3-- 1.000 Na+ * log10 K(298 K) = -1.2702 a= -1.270231816 b= 0 c= 0 d= -4313.391269 e= 0 f= -10.44321362 Fe+++ charge= 3 ion size= 9.0 A b= 0.0000 mole wt.= 55.8450 g 3 species in reaction -2.000 H2O 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -21.6001 a= -21.60013894 b= 0 c= 0 d= -14084.09698 e= 0 f= -16.1367348 Fe(OH)++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 72.8523 g 3 species in reaction -1.000 H2O 3.000 H+ 1.000 FeO2- * log10 K(298 K) = -19.4101 a= -19.410138 b= 0 c= 0 d= -11351.45841 e= 0 f= -14.44753903 FeCl3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 162.2040 g 4 species in reaction -2.000 H2O 3.000 Cl- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -22.7133 a= -22.71332169 b= 0 c= 0 d= -27439.5147 e= 0 f= -58.57119696 AlO+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 42.9809 g 3 species in reaction -1.000 H2O 1.000 AlO2- 2.000 H+ * log10 K(298 K) = -12.2851 a= -12.28510841 b= 0 c= 0 d= -3851.729324 e= 0 f= 0.03681166888 Al(OH)++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 43.9888 g 3 species in reaction -1.000 H2O 1.000 AlO2- 3.000 H+ * log10 K(298 K) = -17.9218 a= -17.92183396 b= 0 c= 0 d= -9473.0536 e= 0 f= -9.421505449 AlSiO5--- charge= -3 ion size= 4.0 A b= .0640 mole wt.= 135.0640 g 4 species in reaction -2.000 H+ 1.000 AlO2- 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 22.6100 a= 22.61000367 b= 0 c= 0 d= 3759.481479 e= 0 f= 0 AlHSiO3++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 104.0731 g 4 species in reaction -1.000 H2O 1.000 AlO2- 3.000 H+ 1.000 SiO2 * log10 K(298 K) = -20.4698 a= -20.4697867 b= 0 c= 0 d= -3459.291193 e= 0 f= 7.101587711 Al+++ charge= 3 ion size= 6.65 A b= .1900 mole wt.= 26.9815 g 3 species in reaction -2.000 H2O 1.000 AlO2- 4.000 H+ * log10 K(298 K) = -22.8792 a= -22.87916415 b= 0 c= 0 d= -10342.69485 e= 0 f= -3.712046094 Al(SO4)2- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 219.1107 g 4 species in reaction -2.000 H2O 2.000 SO4-- 1.000 AlO2- 4.000 H+ * log10 K(298 K) = -28.7791 a= -28.77912186 b= 0 c= 0 d= -15848.17509 e= 0 f= -24.21394248 Si4O10---- charge= -4 ion size= 4.0 A b= .0640 mole wt.= 272.3360 g 3 species in reaction -4.000 H+ 2.000 H2O 4.000 SiO2 * log10 K(298 K) = 36.3001 a= 36.30009571 b= 0 c= 0 d= 10822.83716 e= 0 f= 0 FeO+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 71.8444 g 3 species in reaction -1.000 H2O 2.000 H+ 1.000 FeO2- * log10 K(298 K) = -15.9301 a= -15.93009742 b= 0 c= 0 d= -6777.47262 e= 0 f= -5.711557432 Fe2(OH)2++++ charge= 4 ion size= 4.0 A b= .0640 mole wt.= 145.7046 g 3 species in reaction -2.000 H2O 2.000 FeO2- 6.000 H+ * log10 K(298 K) = -40.2503 a= -40.25029812 b= 0 c= 0 d= -25217.74248 e= 0 f= -32.2734696 FeHSiO3++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 132.9366 g 4 species in reaction -1.000 H2O 1.000 FeO2- 3.000 H+ 1.000 SiO2 * log10 K(298 K) = -21.4908 a= -21.49076107 b= 0 c= 0 d= -9342.250604 e= 0 f= -5.323071029 Fe3(OH)4+++++ charge= 5 ion size= 4.0 A b= .0640 mole wt.= 235.5642 g 3 species in reaction -2.000 H2O 3.000 FeO2- 8.000 H+ * log10 K(298 K) = -58.5004 a= -58.50043928 b= 0 c= 0 d= -39126.96264 e= 0 f= -48.41020527 Fe(SO4)2- charge= -1 ion size= 4.0 A b= .0640 mole wt.= 247.9742 g 4 species in reaction -2.000 H2O 2.000 SO4-- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -26.9801 a= -26.98005092 b= 0 c= 0 d= -19527.88967 e= 0 f= -36.95292446 S-- charge= -2 ion size= 4.0 A b= .0640 mole wt.= 32.0670 g 2 species in reaction -1.000 H+ 1.000 HS- * log10 K(298 K) = 19.0000 a= 18.9999759 b= 0 c= 0 d= -2.999999924e-05 e= 0 f= 0 AlO2H charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 59.9882 g 2 species in reaction 1.000 AlO2- 1.000 H+ * log10 K(298 K) = -6.4467 a= -6.446713653 b= 0 c= 0 d= 1368.552981 e= 0 f= 8.366225013 Ca(OH)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 57.0853 g 3 species in reaction -1.000 H+ 1.000 Ca++ 1.000 H2O * log10 K(298 K) = 12.7802 a= 12.78018933 b= 0 c= 0 d= 4635.53095 e= 0 f= 2.005174972 FeCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 115.8540 g 2 species in reaction 1.000 CO3-- 1.000 Fe++ * log10 K(298 K) = -4.3801 a= -4.3801093 b= 0 c= 0 d= -2884.16422 e= 0 f= -10.38113209 Ca(HCO3)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 101.0949 g 3 species in reaction 1.000 CO3-- 1.000 Ca++ 1.000 H+ * log10 K(298 K) = -11.4346 a= -11.43461418 b= 0 c= 0 d= -9335.338708 e= 0 f= -28.93493326 CaCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 100.0870 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ * log10 K(298 K) = -3.2243 a= -3.224321494 b= 0 c= 0 d= -2198.635138 e= 0 f= -10.25825976 FeHCO3+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 116.8619 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Fe++ * log10 K(298 K) = -12.3291 a= -12.32914131 b= 0 c= 0 d= -10001.77274 e= 0 f= -28.89442749 HCO3- charge= -1 ion size= 5.4 A b= 0.0000 mole wt.= 61.0169 g 2 species in reaction 1.000 CO3-- 1.000 H+ * log10 K(298 K) = -10.3291 a= -10.32912443 b= 0 c= 0 d= -4730.952703 e= 0 f= -13.2925537 Mg(HCO3)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 85.3219 g 3 species in reaction 1.000 CO3-- 1.000 Mg++ 1.000 H+ * log10 K(298 K) = -11.3973 a= -11.39725204 b= 0 c= 0 d= -9470.015117 e= 0 f= -29.53327554 Mg(CO3) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.3140 g 2 species in reaction 1.000 CO3-- 1.000 Mg++ * log10 K(298 K) = -2.9799 a= -2.979856416 b= 0 c= 0 d= -2552.360636 e= 0 f= -10.15910599 CO2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 44.0096 g 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ * log10 K(298 K) = -16.6811 a= -16.68108873 b= 0 c= 0 d= -10740.0203 e= 0 f= -31.7461323 CaSiO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 116.1617 g 4 species in reaction -2.000 H+ 1.000 Ca++ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 18.5400 a= 18.53999001 b= 0 c= 0 d= 2546.007503 e= 0 f= 0 Ca(HSiO3)+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 117.1696 g 4 species in reaction -1.000 H+ 1.000 Ca++ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 8.6094 a= 8.609356374 b= 0 c= 0 d= 822.7361 e= 0 f= -2.553807465 CaSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.1426 g 2 species in reaction 1.000 Ca++ 1.000 SO4-- * log10 K(298 K) = -2.3000 a= -2.299988143 b= 0 c= 0 d= -2770.028075 e= 0 f= -10.05034953 MgSiO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 100.3887 g 4 species in reaction -2.000 H+ 1.000 Mg++ 1.000 H2O 1.000 SiO2 * log10 K(298 K) = 17.4393 a= 17.43927058 b= 0 c= 0 d= 10098.72079 e= 0 f= 18.95807592 FeCl+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 91.2980 g 2 species in reaction 1.000 Cl- 1.000 Fe++ * log10 K(298 K) = -0.1401 a= -0.14009634 b= 0 c= 0 d= -3692.02174 e= 0 f= -12.61014939 FeCl++ charge= 2 ion size= 4.0 A b= .0640 mole wt.= 91.2980 g 4 species in reaction -2.000 H2O 1.000 Cl- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -23.0801 a= -23.08008127 b= 0 c= 0 d= -17206.94882 e= 0 f= -27.31632685 FeCl2+ charge= 1 ion size= 4.0 A b= .0640 mole wt.= 126.7510 g 4 species in reaction -2.000 H2O 2.000 Cl- 4.000 H+ 1.000 FeO2- * log10 K(298 K) = -23.7302 a= -23.73023527 b= 0 c= 0 d= -23878.59439 e= 0 f= -48.64741822 CaH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 137.0652 g 3 species in reaction 1.000 PO4--- 2.000 H+ 1.000 Ca++ * log10 K(298 K) = -20.4920 a= -20.49198184 b= 0 c= 0 d= -9797.776555 e= 0 f= -32.25744603 * from phosphate database CaHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.0573 g 3 species in reaction 1.000 PO4--- 1.000 H+ 1.000 Ca++ * log10 K(298 K) = -14.7720 a= -14.77198184 b= 0 c= 0 d= -8092.358555 e= 0 f= -32.25744603 * from phosphate database CaPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0494 g 2 species in reaction 1.000 PO4--- 1.000 Ca++ * log10 K(298 K) = -6.4519 a= -6.451938402 b= 0 c= 0 d= -4696.647995 e= 0 f= -25.60407412 * from phosphate database H2PO4- charge= -1 ion size= 4.5 A b= 0.0000 mole wt.= 96.9872 g 2 species in reaction 1.000 PO4--- 2.000 H+ * log10 K(298 K) = -19.5619 a= -19.5619384 b= 0 c= 0 d= -8605.394495 e= 0 f= -25.60407412 * from phosphate database H3PO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 97.9951 g 2 species in reaction 1.000 PO4--- 3.000 H+ * log10 K(298 K) = -21.7020 a= -21.70198184 b= 0 c= 0 d= -10158.53806 e= 0 f= -32.25744603 * from phosphate database HP2O7--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 174.9513 g 3 species in reaction -1.000 H2O 2.000 PO4--- 3.000 H+ * log10 K(298 K) = -30.7098 a= -30.7097765 b= 0 c= 0 d= -10109.53721 e= 0 f= -28.87675706 * from phosphate database HPO4-- charge= -2 ion size= 4.0 A b= .0640 mole wt.= 95.9793 g 2 species in reaction 1.000 PO4--- 1.000 H+ * log10 K(298 K) = -12.3499 a= -12.34988834 b= 0 c= 0 d= -5054.768657 e= 0 f= -14.43837871 * from phosphate database KHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0776 g 3 species in reaction 1.000 PO4--- 1.000 K+ 1.000 H+ * log10 K(298 K) = -13.4000 a= -13.39995125 b= 0 c= 0 d= -6768.191548 e= 0 f= -25.60407312 * from phosphate database KP2O7--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 213.0417 g 4 species in reaction -1.000 H2O 2.000 PO4--- 1.000 K+ 2.000 H+ * log10 K(298 K) = -23.4098 a= -23.4098217 b= 0 c= 0 d= -11125.29113 e= 0 f= -40.04245507 * from phosphate database MgH2P2O7 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 200.2642 g 4 species in reaction -1.000 H2O 2.000 PO4--- 1.000 Mg++ 4.000 H+ * log10 K(298 K) = -40.6200 a= -40.61996139 b= 0 c= 0 d= -19487.03132 e= 0 f= -64.51491014 * from phosphate database MgH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 121.2922 g 3 species in reaction 1.000 PO4--- 1.000 Mg++ 2.000 H+ * log10 K(298 K) = -20.7720 a= -20.77197828 b= 0 c= 0 d= -9881.256684 e= 0 f= -32.25744342 * from phosphate database MgHP2O7- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 199.2563 g 4 species in reaction -1.000 H2O 2.000 PO4--- 1.000 Mg++ 3.000 H+ * log10 K(298 K) = -34.8239 a= -34.82391845 b= 0 c= 0 d= -16843.84547 e= 0 f= -57.86151816 * from phosphate database MgHP2O8--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 215.2557 g 3 species in reaction 2.000 PO4--- 1.000 Mg++ 1.000 H+ * log10 K(298 K) = -11.9700 a= -11.97002224 b= 0 c= 0 d= -8616.43622 e= 0 f= -36.20264575 * from phosphate database MgHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.2843 g 3 species in reaction 1.000 PO4--- 1.000 Mg++ 1.000 H+ * log10 K(298 K) = -14.8030 a= -14.80297879 b= 0 c= 0 d= -8101.599485 e= 0 f= -32.25744342 * from phosphate database MgP2O7-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 198.2484 g 4 species in reaction -1.000 H2O 2.000 PO4--- 1.000 Mg++ 2.000 H+ * log10 K(298 K) = -28.5119 a= -28.51188432 b= 0 c= 0 d= -14046.82619 e= 0 f= -51.20815763 * from phosphate database MgPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 119.2764 g 2 species in reaction 1.000 PO4--- 1.000 Mg++ * log10 K(298 K) = -4.9219 a= -4.9219448 b= 0 c= 0 d= -4240.479936 e= 0 f= -25.60407276 * from phosphate database NaHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 118.9691 g 3 species in reaction 1.000 PO4--- 1.000 Na+ 1.000 H+ * log10 K(298 K) = -13.1949 a= -13.19493924 b= 0 c= 0 d= -6707.07368 e= 0 f= -25.60407427 * from phosphate database NaP2O7--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 196.9332 g 4 species in reaction -1.000 H2O 2.000 PO4--- 1.000 Na+ 2.000 H+ * log10 K(298 K) = -23.5998 a= -23.59983448 b= 0 c= 0 d= -11181.93679 e= 0 f= -40.04243293 * from phosphate database P2O7---- charge= -4 ion size= 0.0 A b= 0.0000 mole wt.= 173.9434 g 3 species in reaction -1.000 H2O 2.000 PO4--- 2.000 H+ * log10 K(298 K) = -21.3098 a= -21.30977654 b= 0 c= 0 d= -10109.53721 e= 0 f= -28.87675706 * from phosphate database AlH2PO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 123.9687 g 3 species in reaction 1.000 PO4--- 1.000 Al+++ 2.000 H+ * log10 K(298 K) = -22.2000 a= -22.20000067 b= 0 c= 0 d= -6618.9302 e= 0 f= 0 * from phosphate database AlH4P2O8+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 220.9559 g 3 species in reaction 2.000 PO4--- 1.000 Al+++ 4.000 H+ * log10 K(298 K) = -45.4999 a= -45.49991615 b= 0 c= 0 d= -13565.8 e= 0 f= 0 * from phosphate database AlHPO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 122.9608 g 3 species in reaction 1.000 PO4--- 1.000 Al+++ 1.000 H+ * log10 K(298 K) = -21.6000 a= -21.6 b= 0 c= 0 d= -6440.04 e= 0 f= 0 * from phosphate database AlPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 121.9529 g 2 species in reaction 1.000 PO4--- 1.000 Al+++ * log10 K(298 K) = -20.5000 a= -20.50001711 b= 0 c= 0 d= -6112.0801 e= 0 f= 0 * from phosphate database -end- 1 free electron e- charge= -1 ion size= 0.0 A b= .0640 mole wt.= 0.0000 g 3 species in reaction -.250 O2(aq) -1.000 H+ .500 H2O * log10 K(298 K) = 21.4965 a= 21.49650198 b= 0 c= 0 d= 6757.174919 e= 0 f= -1.842319319 -end- 208 minerals 5CA type= C-S-H formula= (CaO)1.25(SiO2)1(Al2O3)0.125(H2O)1.625 mole vol.= 57.3000 cc mole wt.= 172.2009 g 5 species in reaction -2.250 H+ 1.250 Ca++ .250 AlO2- 2.750 H2O 1.000 SiO2 * log10 K(298 K) = 15.8915 a= 15.89145647 b= 0 c= 0 d= 5225.70552 e= 0 f= 1.236583182 * cement notation: C5/4A1/8S1H13/8 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. 5CNA type= C-S-H formula= (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 mole vol.= 64.5100 cc mole wt.= 183.1919 g 6 species in reaction -2.750 H+ 1.250 Ca++ .500 Na+ .250 AlO2- 2.750 H2O 1.000 SiO2 * log10 K(298 K) = 23.2414 a= 23.24142647 b= 0 c= 0 d= 7769.891839 e= 0 f= 2.278121671 * cement notation: C5/4N1/4A1/8S1H11/8 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. Al(OH)3(am) type= hydroxide formula= Al(OH)3 mole vol.= 31.9560 cc mole wt.= 78.0034 g 3 species in reaction 1.000 AlO2- 1.000 H+ 1.000 H2O * log10 K(298 K) = -13.7589 a= -13.75887112 b= 0 c= 0 d= -4668.909881 e= 0 f= -3.486949961 * amorphous Al(OH)3 (renamed from AlOHam) * cement notation: .5 AH3 Al(OH)3(mic) type= hydroxide formula= Al(OH)3 mole vol.= 31.9560 cc mole wt.= 78.0034 g 3 species in reaction 1.000 AlO2- 1.000 H+ 1.000 H2O * log10 K(298 K) = -14.6689 a= -14.66885929 b= 0 c= 0 d= -3851.361281 e= 0 f= -3.486939538 * microcrystalline Al(OH)3 (renamed from AlOHmic) * cement notation: .5 AH3 Amor-Sl type= oxide formula= SiO2 mole vol.= 29.0000 cc mole wt.= 60.0843 g 1 species in reaction 1.000 SiO2 * log10 K(298 K) = -2.7140 a= -2.714035727 b= 0 c= 0 d= -809.189752 e= 0 f= 0 * Amorphous silica * cement notation: S * * End member of binary CSH-I solid solution from older versions of Cemdata, but CSH-I is no longer recommended in Cemdata18. Anh type= sulfate formula= CaSO4 mole vol.= 45.9400 cc mole wt.= 136.1426 g 2 species in reaction 1.000 Ca++ 1.000 SO4-- * log10 K(298 K) = -4.3574 a= -4.357423147 b= 0 c= 0 d= -5228.525356 e= 0 f= -20.71891204 * Anhydrite * cement notation: Cs Arg type= carbonate formula= CaCO3 mole vol.= 34.1500 cc mole wt.= 100.0870 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ * log10 K(298 K) = -8.3362 a= -8.336158237 b= 0 c= 0 d= -5675.517045 e= 0 f= -20.97339471 * Aragonite * cement notation: Cc Brc type= hydroxide formula= Mg(OH)2 mole vol.= 24.6300 cc mole wt.= 58.3196 g 3 species in reaction -2.000 H+ 1.000 Mg++ 2.000 H2O * log10 K(298 K) = 16.8401 a= 16.84005492 b= 0 c= 0 d= 6782.887663 e= 0 f= 2.704689186 * Brucite * cement notation: MH C2AClH5 type= AFm formula= Ca2AlCl(OH)6(H2O)2 mole vol.= 136.1500 cc mole wt.= 280.6647 g 5 species in reaction -2.000 H+ 2.000 Ca++ 1.000 Cl- 1.000 AlO2- 6.000 H2O * log10 K(298 K) = 14.4436 a= 14.44361275 b= 0 c= 0 d= 1762.591495 e= 0 f= -10.2244204 * Friedel's salt factored by 1/2 * cement notation (modified): C1.5A0.5 (CaCl2)0.5 H5 C2AH7.5 type= AFm formula= Ca2Al2(OH)10(H2O)2.5 mole vol.= 179.71001 cc mole wt.= 349.2300 g 4 species in reaction -2.000 H+ 2.000 Ca++ 2.000 AlO2- 8.500 H2O * log10 K(298 K) = 14.2054 a= 14.20540088 b= 0 c= 0 d= 3827.297306 e= 0 f= -2.885464698 C2AH65 type= AFm formula= Ca2Al(OH)7(H2O)3 mole vol.= 137.2350 cc mole wt.= 280.2342 g 4 species in reaction -3.000 H+ 2.000 Ca++ 1.000 AlO2- 8.000 H2O * log10 K(298 K) = 29.3794 a= 29.37938598 b= 0 c= 0 d= 7522.207466 e= 0 f= -4.126693528 * C4AH13 factored by 1/2 * cement notation: C2A.5H6.5 C2S type= clinker formula= (CaO)2SiO2 mole vol.= 51.7900 cc mole wt.= 172.2391 g 4 species in reaction -4.000 H+ 2.000 Ca++ 2.000 H2O 1.000 SiO2 * log10 K(298 K) = 38.4663 a= 38.46629777 b= 0 c= 0 d= 12467.43799 e= 0 f= 0.2472421114 * belite C3A type= clinker formula= (CaO)3Al2O3 mole vol.= 89.2170 cc mole wt.= 270.1934 g 4 species in reaction -4.000 H+ 3.000 Ca++ 2.000 AlO2- 2.000 H2O * log10 K(298 K) = 70.6786 a= 70.67855898 b= 0 c= 0 d= 21788.24805 e= 0 f= -13.03317219 * tricalcium aluminate C3AFS0.84H4.32 type= hydrogarnet formula= (AlFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) mole vol.= 145.5100 cc mole wt.= 427.3534 g 6 species in reaction -4.000 H+ 1.000 FeO2- 3.000 Ca++ 1.000 AlO2- 6.320 H2O .840 SiO2 * log10 K(298 K) = 22.2849 a= 22.28490284 b= 0 c= 0 d= 6813.298737 e= 0 f= -14.98594519 * cement notation: C3A0.5F0.5S0.84H4.32 * alt formula: Ca3AlFe(SiO4)0.84(OH)8.64 * * Possible end member of Al-Fe siliceous hydrogarnet (Al-Fe SHG) solid solution (Table 1, e). C3AH6 type= hydrogarnet formula= Ca3Al2O6(H2O)6 mole vol.= 149.7020 cc mole wt.= 378.2846 g 4 species in reaction -4.000 H+ 3.000 Ca++ 2.000 AlO2- 8.000 H2O * log10 K(298 K) = 35.5054 a= 35.50541723 b= 0 c= 0 d= 11498.86501 e= 0 f= -1.753219029 * Katoite * * End member of Al-siliceous hydrogarnet (Al-SHG) solid solution (Table 1, d). C3AS0.41H5.18 type= hydrogarnet formula= Ca3Al2O6(SiO2)0.41(H2O)5.18 mole vol.= 146.1200 cc mole wt.= 388.1467 g 5 species in reaction -4.000 H+ 3.000 Ca++ 2.000 AlO2- 7.180 H2O .410 SiO2 * log10 K(298 K) = 28.9372 a= 28.937163 b= 0 c= 0 d= 9382.192907 e= 0 f= -3.215179331 * a silica-poor hydrogrossular, siliceous Al-hydrogarnet * alt formula: Ca3Al2(SiO4)0.41(OH)10.36 * * End member of Al-siliceous hydrogarnet (Al-SHG) solid solution (Table 1, d). C3AS0.84H4.32 type= hydrogarnet formula= AlCa3AlO6(SiO2)0.84(H2O)4.32 mole vol.= 142.4920 cc mole wt.= 398.4899 g 5 species in reaction -4.000 H+ 3.000 Ca++ 2.000 AlO2- 6.320 H2O .840 SiO2 * log10 K(298 K) = 25.7851 a= 25.78508697 b= 0 c= 0 d= 8272.186752 e= 0 f= -4.748506378 * a silica-rich hydrogrossular, siliceous Al-hydrogarnet * alt formula: Ca3Al2(SiO4)0.84(OH)8.64 * * Possible end member of Al-Fe siliceous hydrogarnet (Al-Fe SHG) solid solution (Table 1, e). C3FH6 type= hydrogarnet formula= Ca3Fe2O6(H2O)6 mole vol.= 155.2870 cc mole wt.= 436.0116 g 4 species in reaction -4.000 H+ 2.000 FeO2- 3.000 Ca++ 8.000 H2O * log10 K(298 K) = 29.7051 a= 29.70507401 b= 0 c= 0 d= 8307.518545 e= 0 f= -22.28393129 * Fe-katoite * * End member of Fe siliceous hydrogarnet (Fe-SHG) solid solution (Table 1, f). C3FS0.84H4.32 type= hydrogarnet formula= (FeFeO3)(Ca3O3(SiO2)0.84(H2O)4.32) mole vol.= 148.5230 cc mole wt.= 456.2169 g 5 species in reaction -4.000 H+ 2.000 FeO2- 3.000 Ca++ 6.320 H2O .840 SiO2 * log10 K(298 K) = 19.9847 a= 19.98472613 b= 0 c= 0 d= 5354.444017 e= 0 f= -25.22337966 * a hydroandradite, siliceous Fe-hydrogarnet * alt formula: Ca3Fe2(SiO4)0.84(OH)8.64 * * End member of Al-Fe siliceous hydrogarnet (Al-Fe SHG) solid solution with fixed silica content (Table 1, e). * End member of Fe siliceous hydrogarnet (Fe SHG) solid solution (Table 1, f). C3FS1.34H3.32 type= hydrogarnet formula= Ca3Fe2O6(SiO2)1.34(H2O)3.32 mole vol.= 148.5230 cc mole wt.= 468.2438 g 5 species in reaction -4.000 H+ 2.000 FeO2- 3.000 Ca++ 5.320 H2O 1.340 SiO2 * log10 K(298 K) = 16.1893 a= 16.18930078 b= 0 c= 0 d= 4156.512613 e= 0 f= -26.97386784 * a hydroandradite, siliceous Fe-hydrogarnet * alt formula: Ca3Fe2(SiO4)1.34(OH)6.64 C3S type= clinker formula= (CaO)3SiO2 mole vol.= 73.1800 cc mole wt.= 228.3165 g 4 species in reaction -6.000 H+ 3.000 Ca++ 3.000 H2O 1.000 SiO2 * log10 K(298 K) = 73.2616 a= 73.26155716 b= 0 c= 0 d= 23294.17509 e= 0 f= 0.3252796182 * alite C4AClH10 type= AFm formula= Ca4Al2Cl2(OH)12(H2O)4 mole vol.= 272.3000 cc mole wt.= 561.3294 g 5 species in reaction -4.000 H+ 2.000 Cl- 4.000 Ca++ 2.000 AlO2- 12.000 H2O * log10 K(298 K) = 28.8872 a= 28.88722796 b= 0 c= 0 d= 3525.182989 e= 0 f= -20.44884037 * Friedel's salt, named C4ACl2H10 in paper * cement notation (modified): C3A CaCl2 H10 * * End member of Al-Fe Friedel's salt solid solution. C4FeCl2H10 type= AFm formula= Ca4Fe2Cl2(OH)12(H2O)4 mole vol.= 278.0400 cc mole wt.= 619.0564 g 5 species in reaction -4.000 H+ 12.000 H2O 2.000 FeO2- 2.000 Cl- 4.000 Ca++ * log10 K(298 K) = 27.3978 a= 27.39781202 b= 0 c= 0 d= 3211.111209 e= 0 f= -41.20917513 * Fe-Friedel's salt, named C4FCl2H10 paper * cement notation (modified): C3F CaCl2 H10 * * End member of Al-Fe Friedel's salt solid solution. C4AF type= clinker formula= (CaO)4(Al2O3)(Fe2O3) mole vol.= 130.2020 cc mole wt.= 485.9590 g 5 species in reaction -4.000 H+ 2.000 FeO2- 4.000 Ca++ 2.000 AlO2- 2.000 H2O * log10 K(298 K) = 50.4656 a= 50.46562873 b= 0 c= 0 d= 6436.091359 e= 0 f= -48.94478486 * ferrite C4AH11 type= AFm formula= Ca4Al2(OH)14(H2O)4 mole vol.= 257.3460 cc mole wt.= 524.4380 g 4 species in reaction -6.000 H+ 4.000 Ca++ 2.000 AlO2- 14.000 H2O * log10 K(298 K) = 60.4940 a= 60.49397746 b= 0 c= 0 d= 15723.56435 e= 0 f= -11.94035612 C4AH13 type= AFm formula= Ca4Al2(OH)14(H2O)6 mole vol.= 274.47001 cc mole wt.= 560.4684 g 4 species in reaction -6.000 H+ 4.000 Ca++ 2.000 AlO2- 16.000 H2O * log10 K(298 K) = 58.7604 a= 58.76040273 b= 0 c= 0 d= 15044.85553 e= 0 f= -8.253591174 * OH-AFm * * End member of SO4-OH-AFm solid solution (Table 1, g). C4AH19 type= AFm formula= Ca4Al2(OH)14(H2O)12 mole vol.= 368.69999 cc mole wt.= 668.5596 g 4 species in reaction -6.000 H+ 4.000 Ca++ 2.000 AlO2- 22.000 H2O * log10 K(298 K) = 58.5614 a= 58.56142021 b= 0 c= 0 d= 16241.7182 e= 0 f= 2.805855914 C4AsClH12 type= AFm formula= Ca4Al2Cl(SO4)0.5(OH)12(H2O)6 mole vol.= 288.60001 cc mole wt.= 609.9391 g 6 species in reaction -4.000 H+ 1.000 Cl- 4.000 Ca++ .500 SO4-- 2.000 AlO2- 14.000 H2O * log10 K(298 K) = 27.5805 a= 27.58046749 b= 0 c= 0 d= 3706.96797 e= 0 f= -18.34825177 * Kuzel's salt * cement notation (modified): C3A .5Cs .5CaCl2 H12 C4FH13 type= AFm formula= Ca4Fe2(OH)14(H2O)6 mole vol.= 285.9400 cc mole wt.= 618.1954 g 4 species in reaction -6.000 H+ 2.000 FeO2- 4.000 Ca++ 16.000 H2O * log10 K(298 K) = 53.2586 a= 53.25860085 b= 0 c= 0 d= 5051.345155 e= 0 f= -17.95458119 C12A7 type= clinker formula= (CaO)12(Al2O3)7 mole vol.= 517.79999 cc mole wt.= 1386.6572 g 4 species in reaction -10.000 H+ 12.000 Ca++ 14.000 AlO2- 5.000 H2O * log10 K(298 K) = 167.1958 a= 167.1958227 b= 0 c= 0 d= 50319.49813 e= 0 f= -92.22732903 * mayenite CA2 type= clinker formula= CaO(Al2O3)2 mole vol.= 89.0400 cc mole wt.= 259.9998 g 4 species in reaction -1.000 H2O 1.000 Ca++ 4.000 AlO2- 2.000 H+ * log10 K(298 K) = -30.0628 a= -30.06277247 b= 0 c= 0 d= -10161.80484 e= 0 f= -26.22253969 * calcium dialuminate CA type= clinker formula= CaOAl2O3 mole vol.= 53.6600 cc mole wt.= 158.0386 g 2 species in reaction 1.000 Ca++ 2.000 AlO2- * log10 K(298 K) = -0.3076 a= -0.3076326555 b= 0 c= 0 d= -458.174791 e= 0 f= -13.30153057 * calcium aluminate CAH10 type= AFm formula= CaOAl2O3(H2O)10 mole vol.= 193.9850 cc mole wt.= 338.1906 g 3 species in reaction 1.000 Ca++ 2.000 AlO2- 10.000 H2O * log10 K(298 K) = -7.5942 a= -7.594203732 b= 0 c= 0 d= -2505.455035 e= 0 f= -2.254537309 Cal type= carbonate formula= CaCO3 mole vol.= 36.9340 cc mole wt.= 100.0870 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ * log10 K(298 K) = -8.4800 a= -8.479990532 b= 0 c= 0 d= -5689.203921 e= 0 f= -21.00440941 * Calcite * cement notation: Cc Cls type= sulfate formula= SrSO4 mole vol.= 46.2500 cc mole wt.= 183.6846 g 2 species in reaction 1.000 SO4-- 1.000 Sr++ * log10 K(298 K) = -6.6318 a= -6.631839054 b= 0 c= 0 d= -6425.421539 e= 0 f= -21.70058303 * Celestite CSH3T-T2C type= C-S-H formula= ((CaO)0.75(SiO2)0.5(H2O)1.25)2 mole vol.= 80.5584 cc mole wt.= 189.2384 g 4 species in reaction -3.000 H+ 1.500 Ca++ 4.000 H2O 1.000 SiO2 * log10 K(298 K) = 25.2726 a= 25.27261165 b= 0 c= 0 d= 7428.082891 e= 0 f= 3.264777499 * Ca/Si = 1.5 * cement notation: C3/2S1H5/2 * * End member of multicomponent CSH3T solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSH3T-T5C type= C-S-H formula= ((CaO)1(SiO2)1(H2O)2)1.25 mole vol.= 79.2605 cc mole wt.= 190.2401 g 4 species in reaction -2.500 H+ 1.250 Ca++ 3.750 H2O 1.250 SiO2 * log10 K(298 K) = 18.1390 a= 18.13899854 b= 0 c= 0 d= 5127.78826 e= 0 f= 3.415358687 * Ca/Si = 1.0 * cement notation: C5/4S5/4H5/2 * * End member of multicomponent CSH3T solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSH3T-TobH type= C-S-H formula= (CaO)1(SiO2)1.5(H2O)2.5 mole vol.= 84.9600 cc mole wt.= 191.2419 g 4 species in reaction -2.000 H+ 1.000 Ca++ 3.500 H2O 1.500 SiO2 * log10 K(298 K) = 12.5304 a= 12.53035258 b= 0 c= 0 d= 3282.489718 e= 0 f= 3.57032625 * Ca/Si = 0.67 * cement notation: C1S3/2H5/2 * * End member of multicomponent CSH3T solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSHQ-JenD type= C-S-H formula= (CaO)1.5(SiO2)0.6667(H2O)2.5 mole vol.= 81.0000 cc mole wt.= 169.2123 g 4 species in reaction -3.000 H+ 1.500 Ca++ 4.000 H2O .6667 SiO2 * log10 K(298 K) = 28.7321 a= 28.73213649 b= 0 c= 0 d= 8609.739692 e= 0 f= 2.711087646 * Ca/Si = 2.25 * cement notation: C1.5S0.67H2.5 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSHQ-JenH type= C-S-H formula= (CaO)1.3333(SiO2)1(H2O)2.1667 mole vol.= 76.0000 cc mole wt.= 173.8858 g 4 species in reaction -2.6666 H+ 1.3333 Ca++ 3.500 H2O 1.000 SiO2 * log10 K(298 K) = 22.1808 a= 22.18080846 b= 0 c= 0 d= 6470.553982 e= 0 f= 3.08689873 * Ca/Si = 1.33 * cement notation: C1.33SH2.17 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSHQ-TobD type= C-S-H formula= ((CaO)1.25(SiO2)1(H2O)2.75)0.6667 mole vol.= 48.0000 cc mole wt.= 119.8212 g 4 species in reaction -1.66675 H+ .833375 Ca++ 2.6668 H2O .6667 SiO2 * log10 K(298 K) = 13.6565 a= 13.65648368 b= 0 c= 0 d= 3959.367696 e= 0 f= 1.982071374 * Ca/Si = 1.25 * cement notation: C5/6S2/3H1.83 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. CSHQ-TobH type= C-S-H formula= (CaO)0.6667(SiO2)1(H2O)1.5 mole vol.= 55.0000 cc mole wt.= 124.4939 g 4 species in reaction -1.3334 H+ .6667 Ca++ 2.1667 H2O 1.000 SiO2 * log10 K(298 K) = 8.2876 a= 8.287587462 b= 0 c= 0 d= 2163.381583 e= 0 f= 2.378340334 * Ca/Si = 0.67 * cement notation: C2/3SH1.5 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. Dis-Dol type= carbonate formula= CaMg(CO3)2 mole vol.= 64.3900 cc mole wt.= 184.4010 g 3 species in reaction 2.000 CO3-- 1.000 Ca++ 1.000 Mg++ * log10 K(298 K) = -16.5402 a= -16.54018582 b= 0 c= 0 d= -10035.25018 e= 0 f= -41.21054605 * Disordered dolomite * cement notation: CMc2 ECSH1-KSH type= C-S-H formula= ((KOH)2.5SiO2H2O)0.2 mole vol.= 12.4000 cc mole wt.= 43.6727 g 4 species in reaction -.500 H+ .700 H2O .200 SiO2 .500 K+ * log10 K(298 K) = 5.4999 a= 5.499886291 b= 0 c= 0 d= 1108.807169 e= 0 f= 1.318361267 * cement notation: K0.25S0.2H0.45 * * End member of multicomponent ESCH-1 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH1-NaSH type= C-S-H formula= ((NaOH)2.5SiO2H2O)0.2 mole vol.= 10.5000 cc mole wt.= 35.6185 g 4 species in reaction -.500 H+ .500 Na+ .700 H2O .200 SiO2 * log10 K(298 K) = 5.4104 a= 5.410358898 b= 0 c= 0 d= 1575.198378 e= 0 f= 2.235302407 * cement notation: N0.25S0.2H0.45 * * End member of multicomponent ESCH-1 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH1-SH type= C-S-H formula= (SiO2H2O)1 mole vol.= 33.8000 cc mole wt.= 78.0995 g 2 species in reaction 1.000 H2O 1.000 SiO2 * log10 K(298 K) = -2.5996 a= -2.599589492 b= 0 c= 0 d= -775.067607 e= 0 f= 0 * cement notation: SH * * End member of multicomponent ESCH-1 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH1-SrSH type= C-S-H formula= ((Sr(OH)2)1SiO2H2O)1 mole vol.= 64.0000 cc mole wt.= 199.7341 g 4 species in reaction -2.000 H+ 1.000 Sr++ 3.000 H2O 1.000 SiO2 * log10 K(298 K) = 15.4012 a= 15.40122359 b= 0 c= 0 d= 4225.657132 e= 0 f= 2.83028107 * cement notation (modified): SrO SH2 * * End member of multicomponent ESCH-1 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH1-TobCa type= C-S-H formula= ((Ca(OH)2)0.8333SiO2H2O)1 mole vol.= 68.0000 cc mole wt.= 139.8409 g 4 species in reaction -1.6666 H+ .8333 Ca++ 2.6666 H2O 1.000 SiO2 * log10 K(298 K) = 11.0212 a= 11.0211651 b= 0 c= 0 d= 3023.19863 e= 0 f= 2.572703184 * cement notation: C0.83SH1.83 * * End member of multicomponent ESCH-1 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH2-JenCa type= C-S-H formula= ((Ca(OH)2)1.6667SiO2H2O)0.6 mole vol.= 36.0000 cc mole wt.= 120.9538 g 4 species in reaction -2.00004 H+ 1.00002 Ca++ 2.60004 H2O .600 SiO2 * log10 K(298 K) = 17.6047 a= 17.6047303 b= 0 c= 0 d= 5250.037507 e= 0 f= 4.032229266 * cement notation: CS0.6H1.6 * * End member of multicomponent ESCH-2 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH2-KSH type= C-S-H formula= ((KOH)2.5SiO2H2O)0.2 mole vol.= 12.4000 cc mole wt.= 43.6727 g 4 species in reaction -.500 H+ .700 H2O .200 SiO2 .500 K+ * log10 K(298 K) = 6.0002 a= 6.000232992 b= 0 c= 0 d= 1257.985538 e= 0 f= 1.318361267 * cement notation: K0.25S0.2H0.45 * * End member of multicomponent ESCH-2 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH2-NaSH type= C-S-H formula= ((NaOH)2.5SiO2H2O)0.2 mole vol.= 10.5000 cc mole wt.= 35.6185 g 4 species in reaction -.500 H+ .500 Na+ .700 H2O .200 SiO2 * log10 K(298 K) = 5.9095 a= 5.909479261 b= 0 c= 0 d= 1724.011114 e= 0 f= 2.235302407 * cement notation: N0.25S0.2H0.45 * * End member of multicomponent ESCH-2 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH2-SrSH type= C-S-H formula= ((Sr(OH)2)1SiO2H2O)1 mole vol.= 64.0000 cc mole wt.= 199.7341 g 4 species in reaction -2.000 H+ 1.000 Sr++ 3.000 H2O 1.000 SiO2 * log10 K(298 K) = 16.2004 a= 16.20044686 b= 0 c= 0 d= 4463.945549 e= 0 f= 2.83028107 * cement notation (modified): SrO SH2 * * End member of multicomponent ESCH-2 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ECSH2-TobCa type= C-S-H formula= ((Ca(OH)2)0.8333SiO2H2O)1 mole vol.= 68.0000 cc mole wt.= 139.8409 g 4 species in reaction -1.6666 H+ .8333 Ca++ 2.6666 H2O 1.000 SiO2 * log10 K(298 K) = 11.0212 a= 11.0211651 b= 0 c= 0 d= 3023.19863 e= 0 f= 2.572703184 * cement notation: C0.83SH1.83 * * End member of multicomponent ESCH-2 solid solution (Table 4). Currently only binary solid solutions are supported in GWB. ettringite type= AFt formula= ((H2O)2)Ca6Al2(SO4)3(OH)12(H2O)24 mole vol.= 707.03003 cc mole wt.= 1255.1076 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 34.000 H2O * log10 K(298 K) = 11.1611 a= 11.16105306 b= 0 c= 0 d= -9575.448133 e= 0 f= -36.24958976 * (Al-)ettringite, Ett32, SO4-AFt * cement notation: C6As3H32 * * End member of Fe-Al AFt solid solution (Table 1, b). * End member of ettringite 30-32H solid solution (Table 1, c). ettringite03_ss type= AFt formula= (SO4)Ca2Al0.6666667(OH)4(H2O)8.6666667 mole vol.= 235.67699 cc mole wt.= 418.3692 g 5 species in reaction -1.3333332 H+ 2.000 Ca++ 1.000 SO4-- .6666667 AlO2- 11.3333333 H2O * log10 K(298 K) = 3.7195 a= 3.719542483 b= 0 c= 0 d= -3192.056993 e= 0 f= -12.08317863 * ettringite factored by 1/3 * cement notation: C2As1H32/3 * * End member of SO4-CO3-AFt solid solution (Table 1, a). ettringite05 type= AFt formula= Ca3Al(SO4)1.5(OH)6(H2O)13 mole vol.= 353.51501 cc mole wt.= 627.5538 g 5 species in reaction -2.000 H+ 3.000 Ca++ 1.500 SO4-- 1.000 AlO2- 17.000 H2O * log10 K(298 K) = 5.5802 a= 5.580185741 b= 0 c= 0 d= -4787.82619 e= 0 f= -18.12479466 * ettringite factored by 1/2 * cement notation: C3A0.5s1.5H16 ettringite9 type= AFt formula= Ca6Al2(SO4)3(OH)12(H2O)3 mole vol.= 360.99998 cc mole wt.= 840.7580 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 11.000 H2O * log10 K(298 K) = 47.9924 a= 47.99244409 b= 0 c= 0 d= -5706.663308 e= 0 f= -78.64068023 * an amorphous ettringite/metaettringite, Met9 * cement notation: C6As3H9 Ettringite9_des type= AFt formula= Ca6Al2(SO4)3(OH)12(H2O)3 mole vol.= 360.99998 cc mole wt.= 840.7580 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 11.000 H2O * log10 K(298 K) = 47.9924 a= 47.99244409 b= 0 c= 0 d= -5706.663308 e= 0 f= -78.64068023 * an amorphous ettringite/metaettringite, Met9 * cement notation: C6As3H9 * * duplicate of ettringite9 ettringite13 type= AFt formula= Ca6Al2(SO4)3(OH)12(H2O)7 mole vol.= 410.60001 cc mole wt.= 912.8188 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 15.000 H2O * log10 K(298 K) = 38.9848 a= 38.98481821 b= 0 c= 0 d= 9912.899169 e= 0 f= -71.26627046 * an amorphous ettringite/metaettringite, Met13 * cement notation: C6As3H13 Ettringite13_des type= AFt formula= Ca6Al2(SO4)3(OH)12(H2O)7 mole vol.= 410.60001 cc mole wt.= 912.8188 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 15.000 H2O * log10 K(298 K) = 38.9848 a= 38.98481821 b= 0 c= 0 d= 9912.899169 e= 0 f= -71.26627046 * an amorphous ettringite/metaettringite, Met13 * cement notation: C6As3H13 * * duplicate of ettringite13 ettringite30 type= AFt formula= Ca6Al2(SO4)3(OH)12(H2O)24 mole vol.= 707.79999 cc mole wt.= 1219.0772 g 5 species in reaction -4.000 H+ 6.000 Ca++ 3.000 SO4-- 2.000 AlO2- 32.000 H2O * log10 K(298 K) = 11.7617 a= 11.761677 b= 0 c= 0 d= -9993.558256 e= 0 f= -39.9363547 * a crystalline ettringite, Ett30 * cement notation: C6As3H30 * * End member of ettringite 30-32H solid solution (Table 1, c). Fe-ettringite05 type= AFt formula= Ca3Fe(SO4)1.5(OH)6(H2O)13 mole vol.= 358.77998 cc mole wt.= 656.4173 g 5 species in reaction -2.000 H+ 1.000 FeO2- 3.000 Ca++ 1.500 SO4-- 17.000 H2O * log10 K(298 K) = 6.0301 a= 6.030075881 b= 0 c= 0 d= -8624.223942 e= 0 f= -28.50471811 * Fe-ettringite factored by 1/2 * cement notation: C3F0.5s1.5H16 Fe-ettringite type= AFt formula= Ca6Fe2(SO4)3(OH)12(H2O)26 mole vol.= 717.55997 cc mole wt.= 1312.8346 g 5 species in reaction -4.000 H+ 2.000 FeO2- 6.000 Ca++ 3.000 SO4-- 34.000 H2O * log10 K(298 K) = 12.0608 a= 12.06078094 b= 0 c= 0 d= -17248.22944 e= 0 f= -57.00943665 * Fe-Ett * cement notation: C6Fs3H32 * * End member of Fe-Al AFt solid solution (Table 1, b). Fe-hemicarbonate type= AFm formula= Ca3O3Fe2O3(CaCO3)0.5(CaO2H2)0.5(H2O)9.5 mole vol.= 273.3930 cc mole wt.= 586.1546 g 5 species in reaction -5.000 H+ 2.000 FeO2- .500 CO3-- 4.000 Ca++ 12.500 H2O * log10 K(298 K) = 39.1776 a= 39.17755799 b= 0 c= 0 d= 10447.41742 e= 0 f= -33.29324559 * Fe-Hc10 * cement notation: C4Fc0.5H10 Fe-monosulph05 type= AFm formula= Ca2FeS0.5O5(H2O)6 mole vol.= 160.56999 cc mole wt.= 340.1227 g 5 species in reaction -2.000 H+ 1.000 FeO2- 2.000 Ca++ .500 SO4-- 7.000 H2O * log10 K(298 K) = 12.2269 a= 12.22694992 b= 0 c= 0 d= 2063.244429 e= 0 f= -20.17984662 * Fe-monosulfate factored by 1/2 * cement notation: C2F0.5s0.5H6 Fe-monosulphate type= AFm formula= Ca4Fe2SO10(H2O)12 mole vol.= 321.13998 cc mole wt.= 680.2454 g 5 species in reaction -4.000 H+ 2.000 FeO2- 4.000 Ca++ 1.000 SO4-- 14.000 H2O * log10 K(298 K) = 24.4525 a= 24.45251389 b= 0 c= 0 d= 4126.078131 e= 0 f= -40.35968715 * Fe-monosulfate, Fe-Ms12 * alt formula: Ca4Fe2(SO4)(OH)12(H2O)6 * cement notation: C4FsH12 * * End member of Fe-Al monosulfate solid solution (Table 1, h). Fe type= native formula= Fe mole vol.= 7.0920 cc mole wt.= 55.8450 g 4 species in reaction -2.000 H2O 1.000 FeO2- 3.000 e- 4.000 H+ * log10 K(298 K) = -18.5894 a= -18.5894177 b= 0 c= 0 d= -12404.07402 e= 0 f= -19.18825112 Femonocarbonate type= AFm formula= Ca4O4Fe2O3CO2(H2O)12 mole vol.= 291.66599 cc mole wt.= 644.1898 g 5 species in reaction -4.000 H+ 2.000 FeO2- 1.000 CO3-- 4.000 Ca++ 14.000 H2O * log10 K(298 K) = 21.4186 a= 21.41856163 b= 0 c= 0 d= 1093.382606 e= 0 f= -40.64584335 * Fe-Mc12 * cement notation: C4FcH12 FeOOHmic type= hydroxide formula= FeOOH mole vol.= 34.3055 cc mole wt.= 88.8517 g 2 species in reaction 1.000 FeO2- 1.000 H+ * log10 K(298 K) = -19.5995 a= -19.59945496 b= 0 c= 0 d= -8235.848429 e= 0 f= -16.15381126 * microcrystalline FeOOH * cement notation: .5 FH, F.5H.5 Fe(OH)3(am) type= hydroxide formula= Fe(OH)3 mole vol.= 34.0000 cc mole wt.= 106.8669 g 3 species in reaction 1.000 H2O 1.000 H+ 1.000 FeO2- * log10 K(298 K) = -16.6001 a= -16.60013894 b= 0 c= 0 d= -14084.09687 e= 0 f= -16.13673443 * amorphous Fe(OH)3 * cement notation: .5 FH3 Fe(OH)3(mic) type= hydroxide formula= Fe(OH)3 mole vol.= 34.0000 cc mole wt.= 106.8669 g 3 species in reaction 1.000 H2O 1.000 H+ 1.000 FeO2- * log10 K(298 K) = -18.6001 a= -18.60013933 b= 0 c= 0 d= -14084.09687 e= 0 f= -16.13673443 * microcrystalline Fe(OH)3 * cement notation: .5 FH3 FeCO3(pr) type= carbonate formula= FeCO3 mole vol.= 0.0000 cc mole wt.= 115.8540 g 5 species in reaction -2.000 H2O 4.000 H+ 1.000 FeO2- 1.000 e- 1.000 CO3-- * log10 K(298 K) = -45.0704 a= -45.07041503 b= 0 c= 0 d= -22598.47653 e= 0 f= -37.25687675 Gbs type= hydroxide formula= Al(OH)3 mole vol.= 31.9560 cc mole wt.= 78.0034 g 3 species in reaction 1.000 AlO2- 1.000 H+ 1.000 H2O * log10 K(298 K) = -15.1231 a= -15.12308795 b= 0 c= 0 d= -5075.650047 e= 0 f= -3.486947789 * Gibbsite * cement notation: .5 AH3 Gp type= sulfate formula= CaSO4(H2O)2 mole vol.= 74.6900 cc mole wt.= 172.1730 g 3 species in reaction 1.000 Ca++ 1.000 SO4-- 2.000 H2O * log10 K(298 K) = -4.5806 a= -4.580646993 b= 0 c= 0 d= -5116.920989 e= 0 f= -17.36668544 * Gypsum * cement notation: CsH2 Gr type= native formula= C mole vol.= 5.2980 cc mole wt.= 12.0108 g 4 species in reaction -1.500 H2O .500 CO3-- 1.000 H+ .500 CH4 * log10 K(298 K) = -13.0706 a= -13.07056954 b= 0 c= 0 d= -4458.31044 e= 0 f= -6.67317423 * Graphite Gt type= hydroxide formula= FeO(OH) mole vol.= 20.8200 cc mole wt.= 88.8517 g 2 species in reaction 1.000 FeO2- 1.000 H+ * log10 K(298 K) = -22.5989 a= -22.59890201 b= 0 c= 0 d= -11314.63377 e= 0 f= -16.15232597 * Goethite * cement notation: .5 FH, F.5H.5 Hem type= oxide formula= Fe2O3 mole vol.= 30.2740 cc mole wt.= 159.6882 g 3 species in reaction -1.000 H2O 2.000 FeO2- 2.000 H+ * log10 K(298 K) = -42.0801 a= -42.08013924 b= 0 c= 0 d= -21596.77914 e= 0 f= -33.95130206 * Hematite * cement notation: F hemicarbonat10.5 type= AFm formula= (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)10 mole vol.= 261.2640 cc mole wt.= 537.4352 g 5 species in reaction -5.000 H+ .500 CO3-- 4.000 Ca++ 2.000 AlO2- 13.000 H2O * log10 K(298 K) = 42.6100 a= 42.61001905 b= 0 c= 0 d= 10184.22042 e= 0 f= -12.14093329 * Hc10.5 * cement notation: C4Ac0.5H10.5 hemicarbonate type= AFm formula= (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)11.5 mole vol.= 284.5150 cc mole wt.= 564.4580 g 5 species in reaction -5.000 H+ .500 CO3-- 4.000 Ca++ 2.000 AlO2- 14.500 H2O * log10 K(298 K) = 40.8787 a= 40.87872234 b= 0 c= 0 d= 9549.770855 e= 0 f= -9.376053926 * Hemicarboaluminate, Hc12 * alt formula: Ca4Al2(CO3)0.5(OH)13(H2O)7 * cement notation: C4Ac0.5H12 hemicarbonate9 type= AFm formula= (CaO)3Al2O3(CaCO3)0.5(CaO2H2)0.5(H2O)8.5 mole vol.= 249.26001 cc mole wt.= 510.4124 g 5 species in reaction -5.000 H+ .500 CO3-- 4.000 Ca++ 2.000 AlO2- 11.500 H2O * log10 K(298 K) = 45.6090 a= 45.60898644 b= 0 c= 0 d= 11173.87179 e= 0 f= -14.9057614 * Hc9 * cement notation: C4Ac0.5H9 hemihydrate type= sulfate formula= CaSO4(H2O)0.5 mole vol.= 61.7300 cc mole wt.= 145.1502 g 3 species in reaction 1.000 Ca++ 1.000 SO4-- .500 H2O * log10 K(298 K) = -3.5763 a= -3.576250768 b= 0 c= 0 d= -4904.135062 e= 0 f= -20.02797861 * cement notation: CsH0.5 hydrotalcite type= LDH formula= Mg4Al2O7(H2O)10 mole vol.= 220.2000 cc mole wt.= 443.3308 g 4 species in reaction -6.000 H+ 4.000 Mg++ 2.000 AlO2- 13.000 H2O * log10 K(298 K) = 27.9877 a= 27.98765334 b= 0 c= 0 d= 14558.45083 e= 0 f= 7.646602097 * cement notation: M4AH10 * Mg/Al = 2 * * Note, the fixed-composition mineral here should be used for Portland cement systems. An end member of the same composition, M4A-OH-LDH, is part of the MgAl-OH-LDH solid solution, which is intended for alkali-activated materials. INFCA type= C-S-H formula= (CaO)1(SiO2)1.1875(Al2O3)0.15625(H2O)1.65625 mole vol.= 59.3100 cc mole wt.= 173.1966 g 5 species in reaction -1.6875 H+ 1.000 Ca++ .3125 AlO2- 2.500 H2O 1.1875 SiO2 * log10 K(298 K) = 8.9551 a= 8.955089193 b= 0 c= 0 d= 2835.081302 e= 0 f= 0.735281404 * cement notation: C1A5/32S38/32H53/32 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. INFCN type= C-S-H formula= (CaO)1(SiO2)1.5(Na2O)0.3125(H2O)1.1875 mole vol.= 71.0700 cc mole wt.= 186.9653 g 5 species in reaction -2.625 H+ 1.000 Ca++ .625 Na+ 2.500 H2O 1.500 SiO2 * log10 K(298 K) = 18.7610 a= 18.76103498 b= 0 c= 0 d= 6107.503138 e= 0 f= 3.356136989 * cement notation: C1N5/16S3/2H19/16 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. INFCNA type= C-S-H formula= (CaO)1(SiO2)1.1875(Al2O3)0.15625(Na2O)0.34375(H2O)1.3125 mole vol.= 64.5100 cc mole wt.= 188.3092 g 6 species in reaction -2.375 H+ .3125 AlO2- 1.000 Ca++ .6875 Na+ 2.500 H2O 1.1875 SiO2 * log10 K(298 K) = 17.2325 a= 17.23249672 b= 0 c= 0 d= 5861.4569 e= 0 f= 2.167168117 * cement notation: C1A5/32N11/32S38/32H42/32 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. Jennite type= C-S-H formula= (SiO2)1(CaO)1.666667(H2O)2.1 mole vol.= 78.4000 cc mole wt.= 191.3786 g 4 species in reaction -3.333334 H+ 1.666667 Ca++ 3.766667 H2O 1.000 SiO2 * log10 K(298 K) = 29.3178 a= 29.31782389 b= 0 c= 0 d= 8669.561341 e= 0 f= 3.446374262 * jennite-like gel phase * cement notation: C1.67SH2.1 * * End member of binary CSH-II solid solution (Table 4). K2O type= clinker formula= K2O mole vol.= 40.3800 cc mole wt.= 94.1960 g 3 species in reaction -2.000 H+ 1.000 H2O 2.000 K+ * log10 K(298 K) = 84.0954 a= 84.09538589 b= 0 c= 0 d= 22428.26963 e= 0 f= 0.4201499449 * cement notation: K K2SO4 type= clinker formula= K2SO4 mole vol.= 65.5000 cc mole wt.= 174.2612 g 2 species in reaction 1.000 SO4-- 2.000 K+ * log10 K(298 K) = -1.7895 a= -1.789452603 b= 0 c= 0 d= -7146.619808 e= 0 f= -19.81346363 * Arcanite * cement notation Ks Kln type= clay formula= Al2Si2O5(OH)4 mole vol.= 99.5200 cc mole wt.= 258.1602 g 4 species in reaction 2.000 AlO2- 2.000 H+ 1.000 H2O 2.000 SiO2 * log10 K(298 K) = -38.3245 a= -38.32454554 b= 0 c= 0 d= -12400.26564 e= 0 f= -9.057181888 * Kaolinite * cement notation: AS2H2 KSiOH type= C-S-H formula= ((KOH)2.5SiO2H2O)0.2 mole vol.= 12.4000 cc mole wt.= 43.6727 g 4 species in reaction -.500 H+ .700 H2O .200 SiO2 .500 K+ * log10 K(298 K) = 5.7637 a= 5.763677329 b= 0 c= 0 d= 1187.456467 e= 0 f= 1.318361267 * cement notation: K.25S.2H.45 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. Lim type= clinker formula= CaO mole vol.= 16.7640 cc mole wt.= 56.0774 g 3 species in reaction -2.000 H+ 1.000 Ca++ 1.000 H2O * log10 K(298 K) = 32.5886 a= 32.58857679 b= 0 c= 0 d= 10151.01523 e= 0 f= 0.08388745354 * Lime * cement notation: C M4A-OH-LDH type= LDH formula= Mg4Al2(OH)14(H2O)3 mole vol.= 219.1000 cc mole wt.= 443.3308 g 4 species in reaction -6.000 H+ 4.000 Mg++ 2.000 AlO2- 13.000 H2O * log10 K(298 K) = 34.3070 a= 34.30698297 b= 0 c= 0 d= 16457.78162 e= 0 f= 7.698755652 * cement notation: M4AH10 * Mg/Al = 2 * * End member of multicomponent MgAl-OH-LDH solid solution (Table 3). Currently only binary solid solutions are supported in GWB. * * Note, the MgAl-OH-LDH solid solution is intended for alkali-activated materials. The pure mineral named hydrotalcite (M4AH10) should be used for Portland cement systems. M6A-OH-LDH type= LDH formula= Mg6Al2(OH)18(H2O)3 mole vol.= 305.44001 cc mole wt.= 559.9700 g 4 species in reaction -10.000 H+ 6.000 Mg++ 2.000 AlO2- 17.000 H2O * log10 K(298 K) = 67.9888 a= 67.98880331 b= 0 c= 0 d= 30008.8348 e= 0 f= 13.05606081 * cement notation: M6AH12 * Mg/Al = 3 * * End member of multicomponent MgAl-OH-LDH solid solution (Table 3). Currently only binary solid solutions are supported in GWB. M8A-OH-LDH type= LDH formula= Mg8Al2(OH)22(H2O)3 mole vol.= 392.3600 cc mole wt.= 676.6092 g 4 species in reaction -14.000 H+ 8.000 Mg++ 2.000 AlO2- 21.000 H2O * log10 K(298 K) = 101.6705 a= 101.670518 b= 0 c= 0 d= 43575.1496 e= 0 f= 18.46555123 * cement notation: M8AH14 * Mg/Al = 4 * * End member of multicomponent MgAl-OH-LDH solid solution (Table 3). Currently only binary solid solutions are supported in GWB. Mag type= oxide formula= FeFe2O4 mole vol.= 44.5240 cc mole wt.= 231.5326 g 2 species in reaction 2.000 FeO2- 1.000 Fe++ * log10 K(298 K) = -33.1801 a= -33.1801378 b= 0 c= 0 d= -17540.49918 e= 0 f= -34.15891436 * Magnetite Melanterite type= sulfate formula= FeSO4(H2O)7 mole vol.= 146.5000 cc mole wt.= 278.0160 g 3 species in reaction 1.000 SO4-- 7.000 H2O 1.000 Fe++ * log10 K(298 K) = -2.2089 a= -2.20886342 b= 0 c= 0 d= 3013.02459 e= 0 f= 11.96118662 Mg2Alc0.5OH type= formula= Mg2Al(OH)6(CO3)0.5(H2O)2 mole vol.= 110.6400 cc mole wt.= 243.6702 g 5 species in reaction -2.000 H+ .500 CO3-- 2.000 Mg++ 1.000 AlO2- 6.000 H2O * log10 K(298 K) = 5.9135 a= 5.913535826 b= 0 c= 0 d= 2427.559551 e= 0 f= -9.533075701 * cement notation: M2A0.5c0.5H5 or 1/2 M4AcH10 Mg2Fec0.5OH type= formula= Mg2Fe(OH)6(CO3)0.5(H2O)2 mole vol.= 118.2400 cc mole wt.= 272.5337 g 5 species in reaction -2.000 H+ 1.000 FeO2- .500 CO3-- 2.000 Mg++ 6.000 H2O * log10 K(298 K) = 5.8206 a= 5.820566708 b= 0 c= 0 d= -1619.112448 e= 0 f= -19.69540372 * cement notation: M2F0.5c0.5H5 or 1/2 M4FcH10 Mg3Alc0.5OH type= LDH formula= Mg3Al(OH)8(CO3)0.5(H2O)2.5 mole vol.= 114.9600 cc mole wt.= 310.9974 g 5 species in reaction -4.000 H+ .500 CO3-- 3.000 Mg++ 1.000 AlO2- 8.500 H2O * log10 K(298 K) = 22.7189 a= 22.71889026 b= 0 c= 0 d= 9200.105421 e= 0 f= -6.828472506 * CO3-hydrotalcite * cement notation: 1/2M6AcH13 * * End member of hydrotalcite-pyroaurite (Htlc-Pyraur) solid solution (Table 1, p). Mg3Fec0.5OH type= LDH formula= Mg3Fe(OH)8(CO3)0.5(H2O)2.5 mole vol.= 119.0400 cc mole wt.= 339.8609 g 5 species in reaction -4.000 H+ 1.000 FeO2- .500 CO3-- 3.000 Mg++ 8.500 H2O * log10 K(298 K) = 22.3649 a= 22.36488489 b= 0 c= 0 d= 5075.604806 e= 0 f= -16.990804 * cement notation: 1/2M6FcH13 * * End member of hydrotalcite-pyroaurite (Htlc-Pyraur) solid solution (Table 1, p). Mgs type= carbonate formula= MgCO3 mole vol.= 28.0200 cc mole wt.= 84.3140 g 2 species in reaction 1.000 CO3-- 1.000 Mg++ * log10 K(298 K) = -8.2882 a= -8.288227468 b= 0 c= 0 d= -4543.697257 e= 0 f= -20.20613707 * Magnesite * cement notation: Mc monocarbonate05 type= AFm formula= Ca2AlC0.5O4.5(H2O)5.5 mole vol.= 130.9790 cc mole wt.= 284.2238 g 5 species in reaction -2.000 H+ .500 CO3-- 2.000 Ca++ 1.000 AlO2- 6.500 H2O * log10 K(298 K) = 12.2692 a= 12.26921973 b= 0 c= 0 d= 1099.718617 e= 0 f= -10.78076032 * monocarbonate factored by 1/2 * cement notation: C2A0.5c0.5H5.5 monocarbonate9 type= AFm formula= Ca4Al2CO9(H2O)9 mole vol.= 233.56001 cc mole wt.= 532.4172 g 5 species in reaction -4.000 H+ 1.000 CO3-- 4.000 Ca++ 2.000 AlO2- 11.000 H2O * log10 K(298 K) = 28.5371 a= 28.53705426 b= 0 c= 0 d= 4217.516791 e= 0 f= -25.24792251 * Mc9 * cement notation: C4AcH9 monocarbonate type= AFm formula= Ca4Al2CO9(H2O)11 mole vol.= 261.95801 cc mole wt.= 568.4476 g 5 species in reaction -4.000 H+ 1.000 CO3-- 4.000 Ca++ 2.000 AlO2- 13.000 H2O * log10 K(298 K) = 24.5385 a= 24.53850243 b= 0 c= 0 d= 2199.460032 e= 0 f= -21.5614442 * Monocarboaluminate, Mc11 * alt formula: Ca4Al2(CO3)(OH)12(H2O)5 * cement notation: C4AcH11 mononitrate type= AFm formula= Ca4Al2(OH)12N2O6(H2O)4 mole vol.= 296.6000 cc mole wt.= 614.4332 g 5 species in reaction -4.000 H+ 4.000 Ca++ 2.000 NO3- 2.000 AlO2- 12.000 H2O * log10 K(298 K) = 27.3340 a= 27.33396468 b= 0 c= 0 d= 2205.916688 e= 0 f= -18.59779911 * NO3-AFm * cement notation (modified): C3A Ca(NO3)2 H10 mononitrite type= AFm formula= Ca4Al2(OH)12N2O4(H2O)4 mole vol.= 275.1000 cc mole wt.= 582.4344 g 5 species in reaction 4.000 Ca++ 2.000 NO3- 4.000 e- 2.000 AlO2- 10.000 H2O * log10 K(298 K) = -25.7093 a= -25.70925082 b= 0 c= 0 d= -16841.3731 e= 0 f= -21.94329415 * NO2-AFm * cement notation (modified): C3A Ca(NO2)2 H10 monosulphate9 type= AFm formula= Ca4Al2SO10(H2O)9 mole vol.= 274.59999 cc mole wt.= 568.4728 g 5 species in reaction -4.000 H+ 4.000 Ca++ 1.000 SO4-- 2.000 AlO2- 11.000 H2O * log10 K(298 K) = 30.1529 a= 30.15287269 b= 0 c= 0 d= 4550.796558 e= 0 f= -25.44285863 * Ms9 * cement notation: C4AsH9 monosulphate10_5 type= AFm formula= Ca4Al2SO10(H2O)10.5 mole vol.= 281.6000 cc mole wt.= 595.4956 g 5 species in reaction -4.000 H+ 4.000 Ca++ 1.000 SO4-- 2.000 AlO2- 12.500 H2O * log10 K(298 K) = 28.1339 a= 28.13394875 b= 0 c= 0 d= 3409.965469 e= 0 f= -22.67750719 * Ms10.5 * cement notation: C4AsH10.5 monosulphate12 type= AFm formula= Ca4Al2SO10(H2O)12 mole vol.= 310.1000 cc mole wt.= 622.5184 g 5 species in reaction -4.000 H+ 4.000 Ca++ 1.000 SO4-- 2.000 AlO2- 14.000 H2O * log10 K(298 K) = 26.7888 a= 26.78878413 b= 0 c= 0 d= 3298.866824 e= 0 f= -19.91224565 * monosulfoaluminate, Ms12, SO4-AFm * alt formula: Ca4Al2(SO4)(OH)12(H2O)4 * cement notation: C4AsH12 * * End member of SO4-OH AFm solid solution (Table 1, g). * End member of Fe-Al monosulfate solid solution (Table 1, h). monosulphate14 type= AFm formula= Ca4Al2SO10(H2O)14 mole vol.= 331.6000 cc mole wt.= 658.5488 g 5 species in reaction -4.000 H+ 4.000 Ca++ 1.000 SO4-- 2.000 AlO2- 16.000 H2O * log10 K(298 K) = 26.7637 a= 26.76367306 b= 0 c= 0 d= 4849.121605 e= 0 f= -16.22504033 * Ms14 * alt formula: Ca4Al2(SO4)(OH)12(H2O)6 * cement notation: C4AsH14 monosulphate16 type= AFm formula= Ca4Al2SO10(H2O)16 mole vol.= 350.49999 cc mole wt.= 694.5792 g 5 species in reaction -4.000 H+ 4.000 Ca++ 1.000 SO4-- 2.000 AlO2- 18.000 H2O * log10 K(298 K) = 26.8497 a= 26.84969555 b= 0 c= 0 d= 3920.996004 e= 0 f= -12.86011105 * Ms16 * cement notation: C4AsH16 monosulphate1205 type= AFm formula= Ca2AlS0.5O5(H2O)6 mole vol.= 155.0000 cc mole wt.= 311.2592 g 5 species in reaction -2.000 H+ 2.000 Ca++ .500 SO4-- 1.000 AlO2- 7.000 H2O * log10 K(298 K) = 13.3941 a= 13.39407409 b= 0 c= 0 d= 1649.307718 e= 0 f= -9.956200998 * monosulfate12 factored by 1/2 * cement notation: C2A0.5s0.5H6 Na2O type= clinker formula= Na2O mole vol.= 25.0000 cc mole wt.= 61.9790 g 3 species in reaction -2.000 H+ 2.000 Na+ 1.000 H2O * log10 K(298 K) = 67.4386 a= 67.43864854 b= 0 c= 0 d= 19655.83593 e= 0 f= 4.321860256 * cement notation: N Na2SO4 type= sulfate formula= Na2SO4 mole vol.= 53.3300 cc mole wt.= 142.0442 g 2 species in reaction 1.000 SO4-- 2.000 Na+ * log10 K(298 K) = -0.2984 a= -0.2984198327 b= 0 c= 0 d= -3841.556012 e= 0 f= -13.3150875 * Thenardite * cement notation: Ns NaSiOH type= C-S-H formula= ((NaOH)2.5SiO2H2O)0.2 mole vol.= 10.5000 cc mole wt.= 35.6185 g 4 species in reaction -.500 H+ .500 Na+ .700 H2O .200 SiO2 * log10 K(298 K) = 5.6490 a= 5.648988248 b= 0 c= 0 d= 1646.66001 e= 0 f= 2.235831377 * cement notation: N.25S.2H.45 * * End member of multicomponent CSHQ solid solution (Table 4). Currently only binary solid solutions are supported in GWB. Ord-Dol type= carbonate formula= CaMg(CO3)2 mole vol.= 64.3400 cc mole wt.= 184.4010 g 3 species in reaction 2.000 CO3-- 1.000 Ca++ 1.000 Mg++ * log10 K(298 K) = -17.0902 a= -17.09019646 b= 0 c= 0 d= -10378.4231 e= 0 f= -41.21054605 * Ordered dolomite * cement notation: CMc2 Portlandite type= hydroxide formula= Ca(OH)2 mole vol.= 33.0600 cc mole wt.= 74.0926 g 3 species in reaction -2.000 H+ 1.000 Ca++ 2.000 H2O * log10 K(298 K) = 22.8002 a= 22.80023111 b= 0 c= 0 d= 7301.394065 e= 0 f= 1.686781093 * cement notation: CH Py type= sulfide formula= FeSS mole vol.= 23.9400 cc mole wt.= 119.9790 g 5 species in reaction -1.000 H2O .250 SO4-- .250 H+ 1.000 Fe++ 1.750 HS- * log10 K(298 K) = -26.9225 a= -26.92245616 b= 0 c= 0 d= -12638.88367 e= 0 f= -20.93480472 * Pyrite Qtz type= oxide formula= SiO2 mole vol.= 22.6880 cc mole wt.= 60.0843 g 1 species in reaction 1.000 SiO2 * log10 K(298 K) = -3.7466 a= -3.746614751 b= 0 c= 0 d= -1117.053188 e= 0 f= 0 * Quartz * cement notation: S Sd type= carbonate formula= FeCO3 mole vol.= 29.3780 cc mole wt.= 115.8540 g 2 species in reaction 1.000 CO3-- 1.000 Fe++ * log10 K(298 K) = -10.8903 a= -10.89026812 b= 0 c= 0 d= -5473.77011 e= 0 f= -21.09507925 * Siderite straetlingite5_5 type= AFm formula= Ca2Al2SiO7(H2O)5.5 mole vol.= 212.80001 cc mole wt.= 373.2839 g 5 species in reaction -2.000 H+ 2.000 Ca++ 2.000 AlO2- 6.500 H2O 1.000 SiO2 * log10 K(298 K) = 7.0958 a= 7.095770747 b= 0 c= 0 d= 2181.475531 e= 0 f= -6.692069295 * cement notation: C2ASH5.5 straetlingite7 type= AFm formula= Ca2Al2SiO7(H2O)7 mole vol.= 215.49999 cc mole wt.= 400.3067 g 5 species in reaction -2.000 H+ 2.000 Ca++ 2.000 AlO2- 8.000 H2O 1.000 SiO2 * log10 K(298 K) = 4.8138 a= 4.81376808 b= 0 c= 0 d= 1202.259407 e= 0 f= -3.927278965 * cement notation: C2ASH7 * * End member of straetlingite 7-8 H2O solid solution (Table 1, i). straetlingite type= AFm formula= Ca2Al2SiO7(H2O)8 mole vol.= 216.1100 cc mole wt.= 418.3219 g 5 species in reaction -2.000 H+ 2.000 Ca++ 2.000 AlO2- 9.000 H2O 1.000 SiO2 * log10 K(298 K) = 4.1134 a= 4.113387892 b= 0 c= 0 d= 1366.913776 e= 0 f= -2.08403981 * stratlingite8 * alt formula: Ca2Al2SiO2(OH)10(H2O)3 * cement notation: C2ASH8 * * End member of straetlingite 7-8 H2O solid solution (Table 1, i). Str type= carbonate formula= SrCO3 mole vol.= 39.0100 cc mole wt.= 147.6290 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ * log10 K(298 K) = -9.2707 a= -9.270740495 b= 0 c= 0 d= -6419.173204 e= 0 f= -21.58677443 * Strontianite * cement notation (modified): SrO c Sulfur type= native formula= S mole vol.= 15.6100 cc mole wt.= 32.0670 g 4 species in reaction -1.000 H2O .250 SO4-- 1.250 H+ .750 HS- * log10 K(298 K) = -10.5060 a= -10.50600024 b= 0 c= 0 d= -6079.2525 e= 0 f= -12.27960102 syngenite type= sulfate formula= K2Ca(SO4)2H2O mole vol.= 127.5400 cc mole wt.= 328.4190 g 4 species in reaction 1.000 Ca++ 2.000 SO4-- 1.000 H2O 2.000 K+ * log10 K(298 K) = -7.1965 a= -7.196497103 b= 0 c= 0 d= -12598.95271 e= 0 f= -38.85627865 * cement notation: KCs2H T2C-CNASHss type= C-S-H formula= (CaO)1.5(SiO2)1(H2O)2.5 mole vol.= 80.6000 cc mole wt.= 189.2384 g 4 species in reaction -3.000 H+ 1.500 Ca++ 4.000 H2O 1.000 SiO2 * log10 K(298 K) = 25.5671 a= 25.56711262 b= 0 c= 0 d= 7517.243302 e= 0 f= 3.265822411 * cement notation: C3/2S1H5/2 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. T5C-CNASHss type= C-S-H formula= (CaO)1.25(SiO2)1.25(H2O)2.5 mole vol.= 79.3000 cc mole wt.= 190.2401 g 4 species in reaction -2.500 H+ 1.250 Ca++ 3.750 H2O 1.250 SiO2 * log10 K(298 K) = 18.4471 a= 18.44711129 b= 0 c= 0 d= 5220.492792 e= 0 f= 3.417656539 * cement notation: C5/4S5/4H5/2 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. thaumasite type= AFt formula= (CaSiO3)(CaSO4)(CaCO3)(H2O)15 mole vol.= 330.0000 cc mole wt.= 622.6193 g 6 species in reaction -2.000 H+ 1.000 CO3-- 3.000 Ca++ 1.000 SO4-- 16.000 H2O 1.000 SiO2 * log10 K(298 K) = -0.9173 a= -0.917250943 b= 0 c= 0 d= -8544.402669 e= 0 f= -24.48275947 * Ca3(SiO3)(SO4)(CO3)(H2O)15 * cement notation: C3ScsH15 Tob-I type= C-S-H formula= (SiO2)2.4(CaO)2(H2O)3.2 mole vol.= 140.8000 cc mole wt.= 314.0058 g 4 species in reaction -4.000 H+ 2.000 Ca++ 5.200 H2O 2.400 SiO2 * log10 K(298 K) = 26.7477 a= 26.74767979 b= 0 c= 0 d= 7370.767991 e= 0 f= 6.218650526 * tobermorite-like gel phase * cement notation: C2S2.4H3.2 * * End member of binary CSH-I solid solution from older versions of Cemdata, but CSH-I is no longer recommended in Cemdata18. Tob-II type= C-S-H formula= (SiO2)1(CaO)0.833333(H2O)1.333333 mole vol.= 58.7000 cc mole wt.= 130.8357 g 4 species in reaction -1.666666 H+ .833333 Ca++ 2.166666 H2O 1.000 SiO2 * log10 K(298 K) = 11.1452 a= 11.14523295 b= 0 c= 0 d= 3071.259317 e= 0 f= 2.591092081 * tobermorite-like gel phase * cement notation: C0.83SH1.3 * * End member of binary CSH-II solid solution (Table 4). TobH-CNASHss type= C-S-H formula= (CaO)1(SiO2)1.5(H2O)2.5 mole vol.= 85.0000 cc mole wt.= 191.2419 g 4 species in reaction -2.000 H+ 1.000 Ca++ 3.500 H2O 1.500 SiO2 * log10 K(298 K) = 12.7987 a= 12.79873363 b= 0 c= 0 d= 3362.507631 e= 0 f= 3.569491102 * cement notation: C1S3/2H5/2 * * End member of multicomponent CNASH solid solution (Table 4). Currently only binary solid solutions are supported in GWB. tricarboalu03 type= AFt formula= (CO3)Ca2Al0.6666667(OH)4(H2O)8.6666667 mole vol.= 216.8000 cc mole wt.= 382.3136 g 5 species in reaction -1.3333332 H+ 1.000 CO3-- 2.000 Ca++ .6666667 AlO2- 11.3333333 H2O * log10 K(298 K) = 3.1735 a= 3.173536199 b= 0 c= 0 d= -2586.079211 e= 0 f= -12.36850924 * tricarboaluminate (factored by 1/3) * cement notation: C2A0.33cH10.67 * * End member of SO4-CO3-AFt solid solution (Table 1, a). Tro type= sulfide formula= FeS mole vol.= 18.2000 cc mole wt.= 87.9120 g 3 species in reaction -1.000 H+ 1.000 Fe++ 1.000 HS- * log10 K(298 K) = -5.3100 a= -5.30997859 b= 0 c= 0 d= -2811.88753 e= 0 f= -9.23770551 * Troilite zeoliteP_Ca type= zeolite formula= Ca(Al2Si2)O8(H2O)4.5 mole vol.= 152.8500 cc mole wt.= 359.2756 g 4 species in reaction 2.000 AlO2- 1.000 Ca++ 2.000 SiO2 4.500 H2O * log10 K(298 K) = -20.2997 a= -20.29974652 b= 0 c= 0 d= -5357.72 e= 0 f= -23.7277 * cement notation: CAS2H4.5 * * From original cemdata18 compilation. * GIS-LS-P(Ca) in zeolite21 database is an update to this entry. chabazite type= zeolite formula= Ca(Al2Si4)O12(H2O)6 mole vol.= 251.1600 cc mole wt.= 506.4670 g 4 species in reaction 2.000 AlO2- 1.000 Ca++ 4.000 SiO2 6.000 H2O * log10 K(298 K) = -25.8000 a= -25.79997753 b= 0 c= 0 d= -7737.68 e= 0 f= -6.06643 * cement notation: CAS4H6 * * From original cemdata18 compilation. * CHA(Ca) in zeolite21 database is an update to this entry. M075SH type= M-S-H formula= Mg1.5Si2O5.5(H2O)2.5 mole vol.= 94.8850 cc mole wt.= 225.6632 g 4 species in reaction 1.500 Mg++ 2.000 SiO2 3.000 OH- 1.000 H2O * log10 K(298 K) = -28.6341 a= -28.63408828 b= 0 c= 0 d= -12089.2 e= 0 f= -31.0813 * (MgO)1.5(SiO2)2(H2O)2.5 * cement notation: M1.5S2H2.5 * M-S-H with Mg/Si = 0.75 * * End member of binary M-S-H solid solution (Table 1, q) M15SH type= M-S-H formula= Mg1.5SiO3.5(H2O)2.5 mole vol.= 74.3200 cc mole wt.= 165.5789 g 4 species in reaction 1.500 Mg++ 1.000 SiO2 3.000 OH- 1.000 H2O * log10 K(298 K) = -23.4605 a= -23.46049246 b= 0 c= 0 d= -10396.4 e= 0 f= -29.8608 * (MgO)1.5SiO2(H2O)2.5 * cement notation: M1.5SH2.5 * M-S-H with Mg/Si = 1.5 * * End member of binary M-S-H solid solution (Table 1, q) zeoliteX type= zeolite formula= Na2(Al2Si2.5)O9(H2O)6.2 mole vol.= 213.6000 cc mole wt.= 425.8452 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 2.500 SiO2 6.200 H2O * log10 K(298 K) = -20.0999 a= -20.09994351 b= 0 c= 0 d= -6871.84 e= 0 f= -1.53947 * cement notation: NAS2.5H6.2 * * From original cemdata18 compilation. * FAU-X(Na) in zeolite21 database is an update to this entry. natrolite type= zeolite formula= Na2(Al2Si3)O10(H2O)2 mole vol.= 169.2000 cc mole wt.= 380.2235 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 3.000 SiO2 2.000 H2O * log10 K(298 K) = -30.2000 a= -30.19999092 b= 0 c= 0 d= -9899.44 e= 0 f= -5.06454 * cement notation: NAS3H2 * * From original cemdata18 compilation. * NAT in zeolite21 database is an update to this entry. zeoliteY type= zeolite formula= Na2(Al2Si4)O12(H2O)8 mole vol.= 282.9300 cc mole wt.= 548.3990 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 4.000 SiO2 8.000 H2O * log10 K(298 K) = -25.0000 a= -25.00000834 b= 0 c= 0 d= -7863.67 e= 0 f= 1.06143 * cement notation: NAS4H8 * * From original cemdata18 compilation. * FAU-Y(Na) in zeolite21 database is an update to this entry. Bobb type= phosphate formula= Mg3(PO4)2(H2O)8 mole vol.=191.0996818543 cc mole wt.= 406.9794 g 3 species in reaction 2.000 PO4--- 3.000 Mg++ 8.000 H2O * log10 K(298 K) = -25.3000 a= -25.29999919 b= 0 c= 0 d= -6514.822576 e= 0 f= -53.99546405 * Bobierrite, Bobbierite, MO8 (magnesium orthophosphate octahydrate) * cement notation: M3PH8 * * from phosphate database brushite type= phosphate formula= CaH(PO4)(H2O)2 mole vol.=74.21000003815 cc mole wt.= 172.0877 g 4 species in reaction 1.000 PO4--- 2.000 H2O 1.000 H+ 1.000 Ca++ * log10 K(298 K) = -18.9500 a= -18.95000012 b= 0 c= 0 d= -9829.029129 e= 0 f= -31.14089776 * cement notation: CP.5H2.5 * * from phosphate database Farring type= phosphate formula= Mg3(PO4)2 mole vol.=95.20000457764 cc mole wt.= 262.8578 g 2 species in reaction 2.000 PO4--- 3.000 Mg++ * log10 K(298 K) = -22.4100 a= -22.41 b= 0 c= 0 d= -10876.53884 e= 0 f= -68.75420226 * Farringtonite, MO (magnesium orthophosphate) * cement notation: M3P * * from phosphate database HAP type= phosphate formula= Ca5(PO4)3OH mole vol.=159.6400547028 cc mole wt.= 502.3115 g 4 species in reaction -1.000 H+ 3.000 PO4--- 1.000 H2O 5.000 Ca++ * log10 K(298 K) = -43.9999 a= -43.99992064 b= 0 c= 0 d= -24845.56156 e= 0 f= -105.572502 * Hydroxyapatite * cement notation: C5P1.5H.5 * * from phosphate database HK3CaP2O8 type= phosphate formula= CaK3H(PO4)2 mole vol.=126.4896869659 cc mole wt.= 348.3236 g 4 species in reaction 2.000 PO4--- 3.000 K+ 1.000 H+ 1.000 Ca++ * log10 K(298 K) = -22.4000 a= -22.4 b= 0 c= 0 d= -19718.66796 e= 0 f= -61.58883248 * CaK3H(PO4)2 * cement notation: CK1.5PH.5 * * from phosphate database Mg3P2_22H type= phosphate formula= Mg3(PO4)2(H2O)22 mole vol.=401.9002532959 cc mole wt.= 659.1922 g 3 species in reaction 2.000 PO4--- 3.000 Mg++ 22.000 H2O * log10 K(298 K) = -23.0300 a= -23.0299984 b= 0 c= 0 d= -8150.542983 e= 0 f= -23.42758501 * Cattiite, MO22 (magnesium orthophosphate docosahydrate) * cement notation: M3PH22 * * from phosphate database Mg3P2_4H type= phosphate formula= Mg3(PO4)2(H2O)4 mole vol.=140.7001113892 cc mole wt.= 334.9186 g 3 species in reaction 2.000 PO4--- 3.000 Mg++ 4.000 H2O * log10 K(298 K) = -23.5000 a= -23.50000079 b= 0 c= 0 d= -6180.357284 e= 0 f= -61.3741541 * MO4 (magnesium orthophosphate tetrahydrate) * cement notation: M3PH4 * * from phosphate database MKP type= phosphate formula= MgKPO4(H2O)6 mole vol.=142.4997425079 cc mole wt.= 266.4659 g 4 species in reaction 1.000 PO4--- 1.000 Mg++ 1.000 K+ 6.000 H2O * log10 K(298 K) = -10.9600 a= -10.96000041 b= 0 c= 0 d= -6622.927342 e= 0 f= -21.14336864 * K-struvite (magnesium potassium phosphate hexahydrate) * cement notation: MK.5P.5H6 * * from phosphate database MKPH type= phosphate formula= MgKPO4H2O mole vol.=66.0999584198 cc mole wt.= 176.3899 g 4 species in reaction 1.000 PO4--- 1.000 Mg++ 1.000 K+ 1.000 H2O * log10 K(298 K) = -10.9500 a= -10.94999998 b= 0 c= 0 d= -7179.029913 e= 0 f= -30.37299777 * MgKPO4H2O (magnesium potassium phosphate monohydrate) * cement notation: MK.5P.5H * * from phosphate database Newberyite type= phosphate formula= MgHPO4(H2O)3 mole vol.=82.20001220703 cc mole wt.= 174.3299 g 4 species in reaction 1.000 PO4--- 1.000 Mg++ 3.000 H2O 1.000 H+ * log10 K(298 K) = -17.9300 a= -17.9299996 b= 0 c= 0 d= -7699.619084 e= 0 f= -25.96502732 * cement notation: MP.5H3.5 * * from phosphate database OCP type= phosphate formula= Ca4H(PO4)3(H2O)2.5 mole vol.=182.6300048828 cc mole wt.= 491.2721 g 4 species in reaction 3.000 PO4--- 2.500 H2O 1.000 H+ 4.000 Ca++ * log10 K(298 K) = -48.4000 a= -48.39999806 b= 0 c= 0 d= -26474.72618 e= 0 f= -88.79666672 * octacalcium phosphate (factored by 1/2) * cement notation: C4P1.5H3 * * from phosphate database Phosphor type= phosphate formula= MgHPO4(H2O)7 mole vol.=141.5999031067 cc mole wt.= 246.3907 g 4 species in reaction 1.000 PO4--- 1.000 Mg++ 7.000 H2O 1.000 H+ * log10 K(298 K) = -17.0100 a= -17.00999961 b= 0 c= 0 d= -6997.832496 e= 0 f= -18.58748975 * Phosphorrosslerite * cement notation: MP.5H7.5 * * from phosphate database Mg2KH(PO4)2(H2O)15 type= phosphate formula= Mg2KH(PO4)2(H2O)15 mole vol.= 303.2000 cc mole wt.= 548.8870 g 5 species in reaction 2.000 PO4--- 2.000 Mg++ 1.000 K+ 15.000 H2O 1.000 H+ * log10 K(298 K) = -28.6700 a= -28.67000001 b= 0 c= 0 d= -13821.13302 e= 0 f= -36.03895571 * cement notation: M2K.5PH15.5 * * From phosphate database. Reaction was in wrong section of PhreeqC dataset dated 09.10.2020. Berlinite type= phosphate formula= AlPO4 mole vol.= 46.5800 cc mole wt.= 121.9529 g 2 species in reaction 1.000 PO4--- 1.000 Al+++ * log10 K(298 K) = -20.2396 a= -20.23958851 b= 0 c= 0 d= -7653.0098 e= 0 f= -38.734798 * cement notation = A.5P.5 * * from phosphate database Trolleite type= phosphate formula= Al4(PO4)3(OH)3 mole vol.= 143.7100 cc mole wt.= 443.8621 g 4 species in reaction -3.000 H+ 3.000 PO4--- 4.000 Al+++ 3.000 H2O * log10 K(298 K) = -65.7224 a= -65.72240653 b= 0 c= 0 d= -22577.6 e= 0 f= -115.856 * cement notation = A2P1.5H1.5 * * from phosphate database Wavellite type= phosphate formula= Al3(PO4)2(OH)3(H2O)5 mole vol.= 175.9000 cc mole wt.= 411.9852 g 4 species in reaction -3.000 H+ 2.000 PO4--- 3.000 Al+++ 8.000 H2O * log10 K(298 K) = -31.3298 a= -31.32977129 b= 0 c= 0 d= -9166 e= 0 f= -67.938797 * cement notation = A1.5PH6.5 * * from phosphate database Augellite type= phosphate formula= Al2PO4(OH)3 mole vol.= 73.8903 cc mole wt.= 199.9563 g 4 species in reaction -3.000 H+ 1.000 PO4--- 2.000 Al+++ 3.000 H2O * log10 K(298 K) = -19.7103 a= -19.7102987 b= 0 c= 0 d= -4687.21 e= 0 f= -38.466099 * cement notation = AP.5H1.5 * * from phosphate database Senegalite type= phosphate formula= Al2(PO4)(OH)3H2O mole vol.= 85.670004 cc mole wt.= 217.9715 g 4 species in reaction -3.000 H+ 1.000 PO4--- 2.000 Al+++ 4.000 H2O * log10 K(298 K) = -19.7138 a= -19.71377632 b= 0 c= 0 d= -4602.6299 e= 0 f= -36.624298 * cement notation = C2AP1.5H7.5 * * from phosphate database am-AlP type= phosphate formula= AlPO4(H2O)2 mole vol.= 60.960002 cc mole wt.= 157.9833 g 3 species in reaction 1.000 PO4--- 1.000 Al+++ 2.000 H2O * log10 K(298 K) = -23.6997 a= -23.69967108 b= 0 c= 0 d= -8956.75 e= 0 f= -34.624001 * amorphous aluminum phosphate * cement notation = A.5P.5H2 * * from phosphate database Variscite type= phosphate formula= AlPO4(H2O)2 mole vol.= 60.960002 cc mole wt.= 157.9833 g 3 species in reaction 1.000 PO4--- 1.000 Al+++ 2.000 H2O * log10 K(298 K) = -25.0997 a= -25.09967175 b= 0 c= 0 d= -9374.1602 e= 0 f= -34.624001 * cement notation = A.5P.5H2 * * from phosphate database Bearthite type= phosphate formula= Ca2Al(PO4)2OH mole vol.= 95.2600 cc mole wt.= 314.0876 g 5 species in reaction -1.000 H+ 2.000 Ca++ 2.000 PO4--- 1.000 Al+++ 1.000 H2O * log10 K(298 K) = -30.6495 a= -30.64946131 b= 0 c= 0 d= -14968.5 e= 0 f= -73.153801 * cement notation = C2A.5PH.5 * * from phosphate database Ca-Millisite type= phosphate formula= Ca1.5Al6(PO4)4(OH)9(H2O)3 mole vol.= 281.29999 cc mole wt.= 809.0029 g 5 species in reaction -9.000 H+ 1.500 Ca++ 4.000 PO4--- 6.000 Al+++ 12.000 H2O * log10 K(298 K) = -47.9117 a= -47.91165429 b= 0 c= 0 d= -14502 e= 0 f= -145.793 * cement notation = C1.5A3P2H7.5 * * from phosphate database CaAlPOH type= phosphate formula= CaAlH(PO4)2(H2O)6 mole vol.= 163.60001 cc mole wt.= 366.1014 g 5 species in reaction 1.000 Ca++ 2.000 PO4--- 1.000 Al+++ 1.000 H+ 6.000 H2O * log10 K(298 K) = -45.1003 a= -45.10026624 b= 0 c= 0 d= -19358.4 e= 0 f= -62.127399 * cement notation = CA.5PH6.5 * * from phosphate database Crandallite type= phosphate formula= CaAl3(PO4)2(OH)5H2O mole vol.= 138.2000 cc mole wt.= 414.0170 g 5 species in reaction -5.000 H+ 1.000 Ca++ 2.000 PO4--- 3.000 Al+++ 6.000 H2O * log10 K(298 K) = -35.9001 a= -35.90006138 b= 0 c= 0 d= -10617.9 e= 0 f= -73.502296 * cement notation = CA1.5PH3.5 * * from phosphate database Montgomeryite type= phosphate formula= Ca2Al2(PO4)3(OH)(H2O)7 mole vol.= 454.3000 cc mole wt.= 562.1469 g 5 species in reaction -1.000 H+ 2.000 Ca++ 3.000 PO4--- 2.000 Al+++ 8.000 H2O * log10 K(298 K) = -57.3902 a= -57.39017349 b= 0 c= 0 d= -23920.301 e= 0 f= -98.553497 * cement notation = C2AP1.5H7.5 * * from phosphate database Minyulite type= phosphate formula= KAl2(PO4)2OH(H2O)2 mole vol.= 132.2000 cc mole wt.= 336.0418 g 5 species in reaction -1.000 H+ 1.000 K+ 2.000 PO4--- 2.000 Al+++ 3.000 H2O * log10 K(298 K) = -46.3002 a= -46.30021366 b= 0 c= 0 d= -18529 e= 0 f= -72.132103 * minyulite-like basic potassium aluminum phosphate * cement notation = K.5APH2.5 * * from phosphate database Taranakite type= phosphate formula= H6K3Al5(PO4)8(H2O)18 mole vol.= 625.7000 cc mole wt.= 1342.2946 g 5 species in reaction 3.000 K+ 8.000 PO4--- 5.000 Al+++ 18.000 H2O 6.000 H+ * log10 K(298 K) = -190.1006 a= -190.1006246 b= 0 c= 0 d= -82430.297 e= 0 f= -255.711 * cement notation = K1.5A2.5P4H21 * * from phosphate database Millisite type= phosphate formula= KCaAl6(PO4)4(OH)9(H2O)3 mole vol.= 281.29999 cc mole wt.= 828.0622 g 6 species in reaction -9.000 H+ 1.000 Ca++ 1.000 K+ 4.000 PO4--- 6.000 Al+++ 12.000 H2O * log10 K(298 K) = -58.8206 a= -58.82060166 b= 0 c= 0 d= -19135.5 e= 0 f= -145.118 * cement notation = CK.5A3P2H7.5 * * from phosphate database Ht3_LDH_PO4 type= phosphate formula= Mg6Al2(OH)16(HPO4)(H2O)5 mole vol.= 300.99962 cc mole wt.= 657.9651 g 5 species in reaction 6.000 Mg++ 8.000 OH- 1.000 HPO4-- 2.000 AlO2- 9.000 H2O * log10 K(298 K) = -75.3000 a= -75.29998059 b= 0 c= 0 d= -32997.758 e= 0 f= -98.324005 * cement notation = M6AP.5H13.5 * * from phosphate database Ht4_LDH_PO4 type= phosphate formula= Mg8Al2(OH)20(HPO4)(H2O)6 mole vol.= 380.0000 cc mole wt.= 792.6195 g 5 species in reaction 8.000 Mg++ 12.000 OH- 1.000 HPO4-- 2.000 AlO2- 10.000 H2O * log10 K(298 K) = -97.6000 a= -97.59999397 b= 0 c= 0 d= -44320.398 e= 0 f= -138.07201 * cement notation = M8AP.5H16.5 * * from phosphate database Ht2_LDH_PO4 type= phosphate formula= Mg4Al2(OH)12(HPO4)(H2O)4 mole vol.= 222.00001 cc mole wt.= 523.3107 g 5 species in reaction 4.000 Mg++ 4.000 OH- 1.000 HPO4-- 2.000 AlO2- 8.000 H2O * log10 K(298 K) = -53.0002 a= -53.00016805 b= 0 c= 0 d= -21655 e= 0 f= -59.7257 * cement notation = M4AP.5H10.5 * * from phosphate database LEU type= zeolite formula= K2(Al2Si4O12) mole vol.= 177.3500 cc mole wt.= 436.4944 g 3 species in reaction 2.000 AlO2- 2.000 K+ 4.000 SiO2 * log10 K(298 K) = -27.5999 a= -27.59993557 b= 0 c= 0 d= -11008.3 e= 0 f= -12.0891 * leucite with ANA framework * cement notation: KAS4 * * from zeolite21 database GIS-LSP(K) type= zeolite formula= K2(Al2Si2O8)(H2O)2 mole vol.= 140.2600 cc mole wt.= 352.3562 g 4 species in reaction 2.000 AlO2- 2.000 K+ 2.000 SiO2 2.000 H2O * log10 K(298 K) = -19.6000 a= -19.60002142 b= 0 c= 0 d= -8192.9 e= 0 f= -7.86916 * low-silica gismondine P with GIS framework * cement notation: KAS2H2 * * from zeolite21 database GIS-P1(K) type= zeolite formula= K1.67(Al1.67Si2.33O8)(H2O)1.9 mole vol.= 140.3400 cc mole wt.= 338.0166 g 4 species in reaction 1.670 AlO2- 1.670 K+ 2.330 SiO2 1.900 H2O * log10 K(298 K) = -21.2000 a= -21.20003089 b= 0 c= 0 d= -8198.4 e= 0 f= -6.27327 * gismondine P with GIS framework * cement notation: K.835A.835S2.33H1.9 * * from zeolite21 database PHI(K) type= zeolite formula= K2.5(Al2.5Si5.5O16)(H2O)5 mole vol.= 312.1900 cc mole wt.= 665.7361 g 4 species in reaction 2.500 AlO2- 2.500 K+ 5.500 SiO2 5.000 H2O * log10 K(298 K) = -42.6000 a= -42.59997206 b= 0 c= 0 d= -16989 e= 0 f= -6.22987 * phillipsite with PHI framework * cement notation: K1.25A1.25S5.5H5 * * from zeolite21 database LTA(K) type= zeolite formula= K2(Al2Si2O8)(H2O)3.3 mole vol.= 186.8200 cc mole wt.= 375.7760 g 4 species in reaction 2.000 AlO2- 2.000 K+ 2.000 SiO2 3.300 H2O * log10 K(298 K) = -20.5000 a= -20.50003072 b= 0 c= 0 d= -9301.14 e= 0 f= -5.99043 * Linde type A with LTA framework * cement notation: KAS2H3.3 * * from zeolite21 database CHA(K) type= zeolite formula= K2(Al2Si4O12)(H2O)4 mole vol.= 252.9100 cc mole wt.= 508.5552 g 4 species in reaction 2.000 AlO2- 2.000 K+ 4.000 SiO2 4.000 H2O * log10 K(298 K) = -32.2999 a= -32.29985295 b= 0 c= 0 d= -11899.5 e= 0 f= -8.67089 * chabazite with CHA framework * cement notation: KAS4H4 * * from zeolite21 database FAU-X(K) type= zeolite formula= K2.03(Al2.03Si2.47O9)(H2O)6.04 mole vol.= 223.4800 cc mole wt.= 456.3196 g 4 species in reaction 2.030 AlO2- 2.030 K+ 2.470 SiO2 6.040 H2O * log10 K(298 K) = -22.5000 a= -22.50000537 b= 0 c= 0 d= -8962.67 e= 0 f= -4.93704 * faujasite-X with FAU framework * cement notation: K1.015A1.015S2.47H6.04 * * from zeolite21 database FAU-Y(K) type= zeolite formula= K2.18(Al2.18Si3.82O12)(H2O)7.72 mole vol.= 291.2700 cc mole wt.= 582.4107 g 4 species in reaction 2.180 AlO2- 2.180 K+ 3.820 SiO2 7.720 H2O * log10 K(298 K) = -32.3500 a= -32.35002117 b= 0 c= 0 d= -12169.9 e= 0 f= -4.28224 * faujasite-Y with FAU framework * cement notation: K1.09A1.09S3.82H7.72 * * from zeolite21 database Tetra-NAT(K) type= zeolite formula= K2(Al2Si3O10)(H2O)2 mole vol.= 186.5100 cc mole wt.= 412.4405 g 4 species in reaction 2.000 AlO2- 2.000 K+ 3.000 SiO2 2.000 H2O * log10 K(298 K) = -25.2700 a= -25.27001196 b= 0 c= 0 d= -9974.88 e= 0 f= -8.73284 * tetranatrolite with NAT framework * cement notation: KAS3H2 * * from zeolite21 database NAT(K) type= zeolite formula= K2(Al2Si3O10)(H2O)2 mole vol.= 186.5100 cc mole wt.= 412.4405 g 4 species in reaction 2.000 AlO2- 2.000 K+ 3.000 SiO2 2.000 H2O * log10 K(298 K) = -26.3501 a= -26.35007233 b= 0 c= 0 d= -10296.9 e= 0 f= -8.73284 * natrolite with NAT framework * cement notation: KAS3H2 * * from zeolite21 database MOR(K) type= zeolite formula= K0.65(Al0.65Si5.35O12)(H2O)2.3 mole vol.= 190.8700 cc mole wt.= 426.6371 g 4 species in reaction .650 AlO2- .650 K+ 5.350 SiO2 2.300 H2O * log10 K(298 K) = -22.0000 a= -22.00000928 b= 0 c= 0 d= -7886.6 e= 0 f= -0.1674079999 * mordenite with MOR framework * cement notation: K.325A.325S5.35H2.3 * * from zeolite21 database STI(K) type= zeolite formula= K2.20(Al2.20Si6.80O18)(H2O)4.8 mole vol.= 316.6700 cc mole wt.= 710.8191 g 4 species in reaction 2.200 AlO2- 2.200 K+ 6.800 SiO2 4.800 H2O * log10 K(298 K) = -45.2000 a= -45.19999241 b= 0 c= 0 d= -17165.8 e= 0 f= -4.9278 * stilbite with STI framework * cement notation: K1.1A1.1S6.8H4.8 * * from zeolite21 database HEU(K) type= zeolite formula= K2.22(Al2.22Si6.78O18)(H2O)4.7 mole vol.= 324.8000 cc mole wt.= 709.7775 g 4 species in reaction 2.220 AlO2- 2.220 K+ 6.780 SiO2 4.700 H2O * log10 K(298 K) = -45.1499 a= -45.14988741 b= 0 c= 0 d= -17818 e= 0 f= -5.20139 * heulandite with HEU framework * cement notation: K1.11A1.11S6.78H4.7 * * from zeolite21 database CLI(K) type= zeolite formula= K1.01(Al1.01Si4.99O12)(H2O)2.3 mole vol.= 191.2600 cc mole wt.= 440.3150 g 4 species in reaction 1.010 AlO2- 1.010 K+ 4.990 SiO2 2.300 H2O * log10 K(298 K) = -26.8000 a= -26.80002042 b= 0 c= 0 d= -9570.96 e= 0 f= -2.13363 * clinoptilolite with HEU framework * cement notation: K.505A.505S4.99H2.3 * * from zeolite21 database GIS-LS-P(Ca) type= zeolite formula= Ca(Al2Si2)O8(H2O)4.5 mole vol.= 157.5800 cc mole wt.= 359.2756 g 4 species in reaction 2.000 AlO2- 1.000 Ca++ 2.000 SiO2 4.500 H2O * log10 K(298 K) = -23.5000 a= -23.49997742 b= 0 c= 0 d= -5844.44 e= 0 f= -7.10128 * gismondine low-silica P with GIS framework * cement notation: CAS2H4.5 * * From zeolite21 database. * Update to zeoliteP_Ca in original cemdata18 compilation. SCO type= zeolite formula= Ca(Al2Si3)O10(H2O)3 mole vol.= 172.4210 cc mole wt.= 392.3371 g 4 species in reaction 2.000 AlO2- 1.000 Ca++ 3.000 SiO2 3.000 H2O * log10 K(298 K) = -24.6000 a= -24.59999902 b= 0 c= 0 d= -7372.02 e= 0 f= -7.967099998 * scolecite with NAT framework * cement notation: CAS3H3 * * from zeolite21 database CHA(Ca) type= zeolite formula= Ca(Al2Si4)O12(H2O)6 mole vol.= 247.6100 cc mole wt.= 506.4670 g 4 species in reaction 2.000 AlO2- 1.000 Ca++ 4.000 SiO2 6.000 H2O * log10 K(298 K) = -31.4000 a= -31.40000485 b= 0 c= 0 d= -9408.16 e= 0 f= -6.05813 * chabazite with CHA framework * cement notation: CAS4H6 * * From zeolite21 database. * Update to chabazite in original cemdata18 compilation. MOR(Ca) type= zeolite formula= Ca0.34(Al0.68Si5.32)O12(H2O)2.9 mole vol.= 209.7200 cc mole wt.= 425.6257 g 4 species in reaction .680 AlO2- .340 Ca++ 5.320 SiO2 2.900 H2O * log10 K(298 K) = -21.6427 a= -21.64271378 b= 0 c= 0 d= -6292.51 e= 0 f= 0.3781170002 * mordenite with MOR framework * cement notation: C.34A.34S5.32H2.9 * * from zeolite21 database HEU(Ca)-1 type= zeolite formula= Ca1.07(Al2.14Si6.86)O18(H2O)4.4 mole vol.= 317.8800 cc mole wt.= 660.5465 g 4 species in reaction 2.140 AlO2- 1.070 Ca++ 6.860 SiO2 4.400 H2O * log10 K(298 K) = -40.3849 a= -40.38489309 b= 0 c= 0 d= -12625.9 e= 0 f= -5.871970001 * heulandite with HEU framework * cement notation: C1.07A1.07S6.86H4.4 * * from zeolite21 database HEU(Ca)-2 type= zeolite formula= Ca1.07(Al2.14Si6.86)O18(H2O)4.5 mole vol.= 317.8800 cc mole wt.= 662.3480 g 4 species in reaction 2.140 AlO2- 1.070 Ca++ 6.860 SiO2 4.500 H2O * log10 K(298 K) = -39.3214 a= -39.32137173 b= 0 c= 0 d= -11802 e= 0 f= -5.896200002 * heulandite with HEU framework * cement notation: C1.07A1.07S6.86H4.5 * * from zeolite21 database NAT type= zeolite formula= Na2(Al2Si3)O10(H2O)2 mole vol.= 169.3560 cc mole wt.= 380.2235 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 3.000 SiO2 2.000 H2O * log10 K(298 K) = -26.6000 a= -26.59996854 b= 0 c= 0 d= -8818.32 e= 0 f= -5.05253 * natrolite with NAT framework * cement notation: NAS3H2 * * From zeolite21 database. * Update to natrolite in original cemdata18 compilation. CHA(Na) type= zeolite formula= Na2(Al2Si4)O12(H2O)6 mole vol.= 249.9510 cc mole wt.= 512.3686 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 4.000 SiO2 6.000 H2O * log10 K(298 K) = -31.9001 a= -31.90014322 b= 0 c= 0 d= -10493.9 e= 0 f= 1.57624 * chabazite with CHA framework * cement notation: NAS4H6 * * from zeolite21 database PHI(Na) type= zeolite formula= Na2.5(Al2.5Si5.5)O16(H2O)5 mole vol.= 304.7400 cc mole wt.= 625.4649 g 4 species in reaction 2.500 AlO2- 2.500 Na+ 5.500 SiO2 5.000 H2O * log10 K(298 K) = -39.3749 a= -39.37494721 b= 0 c= 0 d= -11450.3 e= 0 f= -1.3553 * phillipsite with PHI framework * cement notation: N1.25A1.25S5.5H5 * * from zeolite21 database GIS-LS-P(Na) type= zeolite formula= Na2(Al2Si2)O8(H2O)3.8 mole vol.= 153.4900 cc mole wt.= 352.5666 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 2.000 SiO2 3.800 H2O * log10 K(298 K) = -19.6000 a= -19.59996903 b= 0 c= 0 d= -6798.85 e= 0 f= -1.59557 * low-silica gismondine P with GIS framework * cement notation: NAS2H3.8 * * from zeolite21 database FAU-X(Na) type= zeolite formula= Na2(Al2Si2.5)O9(H2O)6.2 mole vol.= 195.8000 cc mole wt.= 425.8452 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 2.500 SiO2 6.200 H2O * log10 K(298 K) = -21.9000 a= -21.89997609 b= 0 c= 0 d= -7412.76 e= 0 f= -1.53822 * faujasite-X with FAU framework * cement notation: NAS2.5H6.2 * * From zeolite21 database. * Update to zeoliteX in original cemdata18 compilation. ANA type= zeolite formula= Na2(Al2Si4)O12(H2O)2 mole vol.= 194.8400 cc mole wt.= 440.3078 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 4.000 SiO2 2.000 H2O * log10 K(298 K) = -26.8000 a= -26.79996199 b= 0 c= 0 d= -8159.59 e= 0 f= -6.177370002 * analcime with ANA framework * cement notation: NAS4H2 * * from zeolite21 database FAU-Y(Na) type= zeolite formula= Na2(Al2Si4)O12(H2O)8 mole vol.= 282.9400 cc mole wt.= 548.3990 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 4.000 SiO2 8.000 H2O * log10 K(298 K) = -29.5000 a= -29.49998329 b= 0 c= 0 d= -9219.61 e= 0 f= 1.03934 * faujasite-Y with FAU framework * cement notation: NAS4H8 * * From zeolite21 database. * Update to zeoliteY in original cemdata18 compilation. SOD(Cl) type= zeolite formula= Na8(Al6Si6)O24Cl2 mole vol.= 421.5300 cc mole wt.= 969.2120 g 4 species in reaction 6.000 AlO2- 8.000 Na+ 6.000 SiO2 2.000 Cl- * log10 K(298 K) = -69.4005 a= -69.40053688 b= 0 c= 0 d= -29708.7 e= 0 f= -40.7156 * sodalite with SOD framework * * from zeolite21 database MOR(Na) type= zeolite formula= Na0.72(Al0.72Si5.28)O12(H2O)2.7 mole vol.= 706.5760 cc mole wt.= 425.0848 g 4 species in reaction .720 AlO2- .720 Na+ 5.280 SiO2 2.710 H2O * log10 K(298 K) = -22.5000 a= -22.49997427 b= 0 c= 0 d= -6925.17 e= 0 f= 1.36533 * mordenite with MOR framework * cement notation: N.36A.36S5.28H2.71 * * from zeolite21 database LTA(Na) type= zeolite formula= Na1.98Al1.98Si2.02O8(H2O)5.31 mole vol.= 186.9500 cc mole wt.= 379.3318 g 4 species in reaction 1.980 AlO2- 1.980 Na+ 2.020 SiO2 5.310 H2O * log10 K(298 K) = -18.2000 a= -18.19997299 b= 0 c= 0 d= -4978.97 e= 0 f= -2.3319 * Linde type A with LTA framework * cement notation: N.99A.99S2.02H5.31 * * from zeolite21 database 4A type= zeolite formula= Na2(Al2Si2)O8(H2O)4.5 mole vol.= 187.0000 cc mole wt.= 365.1772 g 4 species in reaction 2.000 AlO2- 2.000 Na+ 2.000 SiO2 4.500 H2O * log10 K(298 K) = -20.5000 a= -20.50004444 b= 0 c= 0 d= -5902.19 e= 0 f= -3.59334 * Molecular sieve 4 angstrom (commercial zeolite from Sigma Aldrich) * cement notation: NAS2H4.5 * * from zeolite21 database CAN(NO3) type= zeolite formula= Na8(Al6Si6)O24(NO3)2(H2O)4 mole vol.= 435.9600 cc mole wt.= 1094.3766 g 5 species in reaction 6.000 AlO2- 8.000 Na+ 6.000 SiO2 2.000 NO3- 4.000 H2O * log10 K(298 K) = -64.8002 a= -64.80015017 b= 0 c= 0 d= -29167.2 e= 0 f= -35.1885 * nitrate-cancrinite with CAN framework * * from zeolite21 database SOD(OH) type= zeolite formula= Na8(Al6Si6)O24(OH)2(H2O)2 mole vol.= 424.7400 cc mole wt.= 968.3510 g 5 species in reaction 6.000 AlO2- 8.000 Na+ 6.000 SiO2 2.000 OH- 2.000 H2O * log10 K(298 K) = -65.2008 a= -65.20077637 b= 0 c= 0 d= -26430.9 e= 0 f= -38.6249 * hydrosodalite with SOD framework * cement notation: N4A3S6H3 * * from zeolite21 database CLI(Ca) type= zeolite formula= Ca0.52(Al1.04Si4.96)O12(H2O)3.1 mole vol.= 210.9100 cc mole wt.= 436.0453 g 4 species in reaction 1.040 AlO2- .520 Ca++ 4.960 SiO2 3.100 H2O * log10 K(298 K) = -23.6374 a= -23.63742366 b= 0 c= 0 d= -6563.58 e= 0 f= -3.23413 * clinoptilolite with HEU framework * cement notation: C.52A.52S4.96H3.1 * * from zeolite21 database STI(Ca) type= zeolite formula= Ca1.11(Al2.22Si6.78)O18(H2O)6.8 mole vol.= 327.4300 cc mole wt.= 705.2978 g 4 species in reaction 2.220 AlO2- 1.110 Ca++ 6.780 SiO2 6.800 H2O * log10 K(298 K) = -40.4307 a= -40.43066087 b= 0 c= 0 d= -11887.1 e= 0 f= -5.812 * stilbite with STI framework * cement notation: C1.1A1.1S6.78H6.8 * * from zeolite21 database PHI(NaK) type= zeolite formula= Na1.5K(Al2.5Si5.5)O16(H2O)5 mole vol.= 304.7400 cc mole wt.= 641.5734 g 5 species in reaction 2.500 AlO2- 1.500 Na+ 1.000 K+ 5.500 SiO2 5.000 H2O * log10 K(298 K) = -39.8751 a= -39.87505737 b= 0 c= 0 d= -12586.2 e= 0 f= -3.22154 * phillipsite with PHI framework * cement notation: N.75K.5A1.25S5.5H5 * * from zeolite21 database -end- * Use TEdit to add solid solutions here globally, or add them locally * from the Solid Solutions... dialog in any of the GWB modeling apps. 13 solid solutions SO4-CO3-AFt type= guggenheim formula= (SO4,CO3)Ca2Al0.67(OH)4(H2O)8.67 ettringite03_ss tag= SO4-AFt contains tricarboalu03 tag= CO3-AFt from 0.00 to 1.00 a0= 1.67 a1= .946 a2= 0.0 * Table 1, a * Miscibility gap: X CO3, solid = 0.45-0.90 * End member order chosen to match expression of miscibility gap * * Solid solution of ettringite and tricarboaluminate, each factored by 1/3 Fe-Al-AFt type= guggenheim formula= Ca6(Al,Fe)2(SO4)3(OH)12(H2O)26 Fe-ettringite tag= Fe-ett contains ettringite tag= ett32 from 0.00 to 1.00 a0= 2.1 a1= -.169 a2= 0.0 * Table 1, b * Miscibility gap: X Al, solid = 0.25-0.65 * End member order chosen to match expression of miscibility gap * * Solid solution of Al- and Fe-ettringites Ettringite 30-32H type= ideal ettringite30 tag= ett30 contains ettringite tag= ett32 from 0.00 to 1.00 * Table 1, c * * Solid solution describing dehydration of crystalline ettringite. * This solid solution should be used in discrete mode. Al-SHG type= ideal C3AH6 tag= Kto contains C3AS0.41H5.18 tag= AS.41 from 0.00 to 1.00 * Table 1, d * * Solid solution between Katoite and a hydrogrossular (Al siliceous hydrogarnet) Al-Fe SHG type= ideal formula= Ca3(Al,Fe)2(SiO4)0.84(OH)8.64 C3AFS0.84H4.32 tag= AFS.84 contains C3FS0.84H4.32 tag= FS.84 from 0.00 to 1.00 * Table 1, e * * Mixed Al-Fe siliceous hydrogarnet solid solution with fixed silica content * * Using end members C3AFS0.84H4.32 and C3FS0.84H4.32 causes the solid solution to take up iron and a part of the aluminum in hydrated cements (Al/Fe > 1 in solid not considered). Using end members C3AS0.84H4.32 and C3FS0.84H4.32 allows the full range of compositions. Fe-SHG type= ideal C3FH6 tag= Fe-Kto contains C3FS0.84H4.32 tag= FS.84 from 0.00 to 1.00 * Table 1, f * * Solid solution between Fe-katoite and a hydroandradite (Fe siliceous hydrogarnet) SO4-OH-AFm type= guggenheim formula= Ca4Al2(SO4,2OH)(OH)12(H2O)6 monosulphate12 tag= SO4-AFm contains C4AH13 tag= OH-AFm from 0.00 to 1.00 a0= .188 a1= 2.49 a2= 0.0 * Table 1, g * Miscibility gap: X OH, solid = 0.5-0.97 * End member order chosen to match expression of miscibility gap * * Solid solution of SO4-AFm (Ms12) and OH-AFm Fe-Al monosulfate type= guggenheim formula= Ca4(Fe,Al)2SO10(H2O)12 Fe-monosulphate tag= Fe-Ms contains monosulphate12 tag= Ms from 0.00 to 1.00 a0= 1.26 a1= 1.57 a2= 0.0 * Table 1, h * Miscibility gap: X Al, solid = 0.45-0.95 * End member order chosen to match expression of miscibility gap * * Fe-Al SO4-AFm (monosulfate) solid solution Straetlingite 7-8H type= ideal straetlingite tag= sra8 contains straetlingite7 tag= sra7 from 0.00 to 1.00 * Table 1, i * * Solid solution describing dehydration of crystalline straetlingite. * This solid solution should be used in discrete mode. Al-Fe Friedel's salt type= ideal formula= Ca4(Al,Fe)2Cl2(OH)12(H2O)4 C4AClH10 tag= FS contains C4FeCl2H10 tag= Fe-FS from 0.00 to 1.00 * Table 1, k * * Solid solution of Al-Fe Friedel's salt Htlc-Pyraur type= ideal formula= Mg3(Al,Fe)(OH)8(CO3)0.5(H2O)2.5 Mg3Alc0.5OH tag= Htlc contains Mg3Fec0.5OH tag= Pyraur from 0.00 to 1.00 * Table 1, p * * Solid solution of (CO3)hydrotalcite and (CO3)pyroaurite M-S-H type= ideal M15SH tag= M1.5 contains M075SH tag= M.75 from 0.00 to 1.00 * Table 1, q * * M-S-H solid solution, with Mg/Si ranging from 1.5 to 0.75 CSH-II type= ideal Jennite tag= jen contains Tob-II tag= tobII from 0.00 to 1.00 * Table 4 * * Solid solution of jennite-like and tobermorite-like gel phases * * Currently unsupported solid solutions: * * MgAl-OH-LDH type= ideal * M4A-OH-LDH tag= M4A from 0.00 to 1.00 * M6A-OH-LDH tag= M6A from 0.00 to 1.00 * M8A-OH-LDH tag= M8A from 0.00 to 1.00 * * Table 3 * * * * Currently only binary solid solutions are supported in GWB. * * ECSH-1 type= ideal * ECSH1-TobCa tag= E1-TobCa from 0.00 to 1.00 * ECSH1-SH tag= E1-SH from 0.00 to 1.00 * ECSH1-NaSH tag= E1-NaSH from 0.00 to 1.00 * ECSH1-KSH tag= E1-KSH from 0.00 to 1.00 * ECSH1-SrSH tag= E1-SrSH from 0.00 to 1.00 * * Table 4 * * * * Currently only binary solid solutions are supported in GWB. * * ECSH-2 type= ideal * ECSH2-TobCa tag= E2-TobCa from 0.00 to 1.00 * ECSH2-JenCa tag= E2-JenCa from 0.00 to 1.00 * ECSH2-NaSH tag= E2-NaSH from 0.00 to 1.00 * ECSH2-KSH tag= E2-KSH from 0.00 to 1.00 * ECSH2-SrSH tag= E2-SrSH from 0.00 to 1.00 * Table 4 * * Currently only binary solid solutions are supported in GWB. * * CSHQ type= ideal * CSHQ-TobH tag= Q-TobH from 0.00 to 1.00 * CSHQ-TobD tag= Q-TobD from 0.00 to 1.00 * CSHQ-JenH tag= Q-JenH from 0.00 to 1.00 * CSHQ-JenD tag= Q-JenD from 0.00 to 1.00 * NaSiOH tag= Q-NaSH from 0.00 to 1.00 * KSiOH tag= Q-KSH from 0.00 to 1.00 * * Table 4 * * * * Currently only binary solid solutions are supported in GWB. * * CSH3T type= ideal * CSH3T-TobH tag= 3T-TobH from 0.00 to 1.00 * CSH3T-T5C tag= 3T-T5C from 0.00 to 1.00 * CSH3T-T2C tag= 3T-T2C from 0.00 to 1.00 * * Table 4 * * * * Currently only binary solid solutions are supported in GWB. * * CNASH type= ideal * TobH-CNASHss tag= NA-TobH from 0.00 to 1.00 * INFCA tag= NA-INFCA from 0.00 to 1.00 * INFCN tag= NA-INFCN from 0.00 to 1.00 * INFCNA tag= NA-INFCNA from 0.00 to 1.00 * T5C-CNASHss tag= NA-T5C from 0.00 to 1.00 * 5CA tag= NA-5CA from 0.00 to 1.00 * 5CNA tag= NA-5CNA from 0.00 to 1.00 * T2C-CNASHss tag= NA-T2C from 0.00 to 1.00 * * Table 4 * * * * Currently only binary solid solutions are supported in GWB. -end- 7 gases CH4(g) mole wt.= 16.0424 g chi= -537.779 1.54946 -.000927827 1.20861 -.00370814 3.33804e-6 Pcrit= 45.99 bar Tcrit= 190.56 K omega= .011 1 species in reaction 1.000 CH4 * log10 K(298 K) = -2.8651 a= -2.86511307 b= 0 c= 0 d= 4440.08393 e= 0 f= 12.61532661 CO2(g) mole wt.= 44.0096 g chi= -1430.87 3.598 -.00227376 3.47644 -.0104247 8.46271e-6 Pcrit= 73.74 bar Tcrit= 304.12 K omega= .225 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ * log10 K(298 K) = -18.1429 a= -18.14288105 b= 0 c= 0 d= -6471.092769 e= 0 f= -20.98954568 H2(g) mole wt.= 2.0158 g chi= -12.5908 .259789 -7.2473e-5 .00471947 -2.69962e-5 2.15622e-8 Pcrit= 12.93 bar Tcrit= 32.98 K omega= -.217 1 species in reaction 1.000 H2(aq) * log10 K(298 K) = -3.1062 a= -3.10618932 b= 0 c= 0 d= 2359.534203 e= 0 f= 7.209997168 H2O(g) mole wt.= 18.0152 g chi= -6191.41 14.8528 -.00914267 -66.3326 .18277 -.00013274 Pcrit= 220.64 bar Tcrit= 647.14 K omega= .344 a=-.0109 b= 0.0 1 species in reaction 1.000 H2O * log10 K(298 K) = 1.4891 a= 1.48911967 b= 0 c= 0 d= 2820.718831 e= 0 f= 1.843239155 H2S(g) mole wt.= 34.0828 g Pcrit= 89.63 bar Tcrit= 373.4 K omega= .090 2 species in reaction 1.000 H+ 1.000 HS- * log10 K(298 K) = -7.9602 a= -7.96018341 b= 0 c= 0 d= -2226.00998 e= 0 f= -6.69272682 N2(g) mole wt.= 28.0134 g Pcrit= 33.98 bar Tcrit= 126.2 K omega= .037 1 species in reaction 1.000 N2 * log10 K(298 K) = -3.1874 a= -3.1873596 b= 0 c= 0 d= 3734.41569 e= 0 f= 10.70890673 O2(g) mole wt.= 31.9988 g Pcrit= 50.43 bar Tcrit= 154.58 K omega= .025 1 species in reaction 1.000 O2(aq) * log10 K(298 K) = -2.8803 a= -2.88027637 b= 0 c= 0 d= 3828.771504 e= 0 f= 10.69794514 -end- 27 oxides C(ccn) mole wt.= 56.0774 g 3 species in reaction 1.000 Ca++ -2.000 H+ 1.000 H2O A(ccn) mole wt.= 101.9612 g 3 species in reaction 2.000 AlO2- 2.000 H+ -1.000 H2O F(ccn) mole wt.= 159.6882 g 3 species in reaction 2.000 FeO2- 2.000 H+ -1.000 H2O H(ccn) mole wt.= 18.0152 g 1 species in reaction 1.000 H2O K(ccn) mole wt.= 94.1960 g 3 species in reaction 2.000 K+ -2.000 H+ 1.000 H2O M(ccn) mole wt.= 40.3044 g 3 species in reaction 1.000 Mg++ -2.000 H+ 1.000 H2O N(ccn) mole wt.= 61.9790 g 3 species in reaction 2.000 Na+ -2.000 H+ 1.000 H2O S(ccn) mole wt.= 60.0843 g 1 species in reaction 1.000 SiO2 c(ccn) mole wt.= 44.0096 g 3 species in reaction 1.000 CO3-- 2.000 H+ -1.000 H2O s(ccn) mole wt.= 80.0652 g 3 species in reaction 1.000 SO4-- 2.000 H+ -1.000 H2O P(ccn) mole wt.= 141.9446 g 3 species in reaction 2.000 PO4--- -3.000 H2O 6.000 H+ Al2O3(ox) mole wt.= 101.9612 g 3 species in reaction 2.000 AlO2- 2.000 H+ -1.000 H2O CaO(ox) mole wt.= 56.0774 g 3 species in reaction 1.000 Ca++ -2.000 H+ 1.000 H2O Fe2O3(ox) mole wt.= 159.6882 g 3 species in reaction 2.000 FeO2- 2.000 H+ -1.000 H2O H2O(ox) mole wt.= 18.0152 g 1 species in reaction 1.000 H2O K2O(ox) mole wt.= 94.1960 g 3 species in reaction 2.000 K+ -2.000 H+ 1.000 H2O MgO(ox) mole wt.= 40.3044 g 3 species in reaction 1.000 Mg++ -2.000 H+ 1.000 H2O Na2O(ox) mole wt.= 61.9790 g 3 species in reaction 2.000 Na+ -2.000 H+ 1.000 H2O SiO2(ox) mole wt.= 60.0843 g 1 species in reaction 1.000 SiO2 CO2(ox) mole wt.= 44.0096 g 3 species in reaction 1.000 CO3-- 2.000 H+ -1.000 H2O SO3(ox) mole wt.= 80.0652 g 3 species in reaction 1.000 SO4-- 2.000 H+ -1.000 H2O P2O5(ox) mole wt.= 141.9446 g 3 species in reaction 2.000 PO4--- -3.000 H2O 6.000 H+ SrO(ox) mole wt.= 103.6194 g 3 species in reaction 1.000 Sr++ -2.000 H+ 1.000 H2O N2O5(ox) mole wt.= 108.0104 g 3 species in reaction 2.000 NO3- 2.000 H+ -1.000 H2O Ca(NO3)2(ox) mole wt.= 164.0878 g 2 species in reaction 1.000 Ca++ 2.000 NO3- CaCl2(ox) mole wt.= 110.9840 g 2 species in reaction 1.000 Ca++ 2.000 Cl- HCl(ox) mole wt.= 36.4609 g 2 species in reaction 1.000 H+ 1.000 Cl- -end- * * Key reference: * * Lothenbach, B., D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, * B. Dilnesa, G.D. Miron, and R.J. Myers, 2019, Cemdata18: A chemical * thermodynamic database for hydrated Portland cements and alkali- * activated materials. Cement and Concrete Research 115, 472-506. * * * References for phosphate and zeolite data: * * Lothenbach, B., Xu, B., and Winnefeld, F. (2019) Thermodynamic data for * magnesium (potassium) phosphates. Applied Geochemistry, 111, 104-450. * * Ma, B. and B. Lothenbach (2020) Synthesis, characterization, and * thermodynamic study of selected Na-based zeolites, Cement and * Concrete Research, 135, 106-111. * * Ma, B. and B. Lothenbach (2020) Thermodynamic study of cement/rock * interactions using experimentally generated solubility data of * zeolites, Cement and Concrete Research, 135, 106-149. * * Ma, B. and B. Lothenbach (2021) Synthesis, characterization, and * thermodynamic study of selected K-based zeolites, Cement and * Concrete Research, 148, 106-537. * * Xu, B., B. Lothenbach, and F. Winnefeld, (2020) Influence of * wollastonite on hydration and properties of magnesium potassium * phosphate cements, Cement and Concrete Research, 131, 106-012. * * Xu, B., F. Winnefeld, B. Ma, D. Rentsch, and B. Lothenbach (2022) * Influence of aluminum sulfate on properties and hydration of * magnesium potassium phosphate cements, Cement and Concrete Research, * 156, 106788. * * * Sources for gas fugacity coefficient calculations: * * Poling, B.E., J.M. Prausnitz, and J.P. O'Connell, 2001, The Properties * of Gases and Liquids, 5th ed. McGraw Hill, New York. * * Spycher, N.F. and M.H. Reed, Fugacity coefficients of H2, CO2, CH4, * H2O and of H2O-CO2-CH4 mixtures: A virial equation treatment for * moderate pressures and temperatures applicable to calculations of * hydrothermal boiling. Geochimica et Cosmochimica Acta 52, 739-749. * * Tsonopoulos, C., 1974, An empirical correlation of second virial * coefficients. AIChE Journal 20, 263-272. * * Tsonopoulos, C., and J.L. Heidman, 1990, From the virial to the cubic * equation of state. Fluid Phase Equilibria 57, 261-276 * .